Prediction and classification of sEMG-based pinch force between different fingers

计算机科学 人工智能 模式识别(心理学) 特征提取 卷积神经网络 相似性(几何) 人工神经网络 特征(语言学) 计算机视觉 机器学习 图像(数学) 哲学 语言学
作者
Yansheng Wu,Shili Liang,Yongkai Ma,Bowen Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121635-121635 被引量:6
标识
DOI:10.1016/j.eswa.2023.121635
摘要

The movement of intelligent EMG-driven prosthesis mainly relies on the synergy of different fingers to achieve function of grasping objects. The paper proposes a novel scheme for force prediction and movement classification about pinch between different fingers based on surface electromyography (sEMG) using machine learning. The pinch force and sEMG signals are recorded synchronously by a data acquisition device. Eight features are extracted, which are proven to have better performance in the estimation of sEMG-to-force. We present a novel feature selection method that uses the one-dimensional time series similarity assessment based on Manhattan distance to eliminate the repetitive information between features. Three optimal features carrying less repetitive information are retained. Seven machine learning algorithms are used to predict force strength. The results show that the Long Short Term Memory (LSTM) has the best performance of force prediction, achieving a R2 of 0.9517 and RMSE of 3.2723. The paper proposes a novel method of converting EMG feature sequences to the normalized gray image in order to classify the finger movement. Five classifiers based on image feature extraction and the Convolutional Neural Network (CNN) are developed respectively. The experimental results indicate that the CNN performs best, achieving an accuracy of 97.66%. In this way, it not only realizes the accurate force prediction, but also realizes the movement classification between different fingers. The proposed methodology has the potential to realize simultaneous force and movement control of prosthetic hand.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然的芯发布了新的文献求助10
刚刚
hui发布了新的文献求助30
刚刚
犹豫绾绾发布了新的文献求助10
1秒前
1秒前
1秒前
美好二娘完成签到 ,获得积分10
2秒前
听见完成签到,获得积分10
2秒前
骡子发布了新的文献求助10
2秒前
Lu发布了新的文献求助10
4秒前
wyc发布了新的文献求助10
5秒前
科研通AI5应助如意草丛采纳,获得10
5秒前
胡萝卜发布了新的文献求助10
5秒前
所所应助专注邴采纳,获得10
5秒前
free发布了新的文献求助10
6秒前
骡子完成签到,获得积分10
7秒前
今后应助HHH采纳,获得10
7秒前
7秒前
7秒前
深情安青应助huhu采纳,获得10
8秒前
和谐面包完成签到,获得积分10
8秒前
8秒前
光亮语梦完成签到 ,获得积分10
10秒前
10秒前
科研通AI5应助always采纳,获得30
12秒前
武广敏完成签到,获得积分10
13秒前
波波发布了新的文献求助20
14秒前
14秒前
小二郎应助加速采纳,获得10
14秒前
14秒前
Docline完成签到,获得积分10
14秒前
wgm1104发布了新的文献求助10
15秒前
啦啦啦发布了新的文献求助20
15秒前
如意草丛发布了新的文献求助10
15秒前
充电宝应助香蕉雨安采纳,获得10
15秒前
充电宝应助ONION采纳,获得10
16秒前
tangyuan完成签到,获得积分10
17秒前
打打应助落寞的乐天采纳,获得10
17秒前
完美世界应助小慧儿采纳,获得10
17秒前
18秒前
wanci应助现代雁桃采纳,获得10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791756
求助须知:如何正确求助?哪些是违规求助? 3336090
关于积分的说明 10278727
捐赠科研通 3052729
什么是DOI,文献DOI怎么找? 1675280
邀请新用户注册赠送积分活动 803318
科研通“疑难数据库(出版商)”最低求助积分说明 761165