Emotion Recognition From Few-Channel EEG Signals by Integrating Deep Feature Aggregation and Transfer Learning

脑电图 计算机科学 学习迁移 频道(广播) 人工智能 模式识别(心理学) 情绪分类 语音识别 特征提取 特征(语言学) 心理学 神经科学 电信 语言学 哲学
作者
Fang Liu,Pei Yang,Yezhi Shu,Niqi Liu,Jenny Sheng,Junwen Luo,Xiaoan Wang,Yong‐Jin Liu
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:15 (3): 1315-1330 被引量:14
标识
DOI:10.1109/taffc.2023.3336531
摘要

Electroencephalogram (EEG) signals have been widely studied in human emotion recognition. The majority of existing EEG emotion recognition algorithms utilize dozens or hundreds of electrodes covering the whole scalp region (denoted as full-channel EEG devices in this paper). Nowadays, more and more portable and miniature EEG devices with only a few electrodes (denoted as few-channel EEG devices in this paper) are emerging. However, emotion recognition from few-channel EEG data is challenging because the device can only capture EEG signals from a portion of the brain area. Moreover, existing full-channel algorithms cannot be directly adapted to few-channel EEG signals due to the significant inter-variation between full-channel and few-channel EEG devices. To address these challenges, we propose a novel few-channel EEG emotion recognition framework from the perspective of knowledge transfer. We leverage full-channel EEG signals to provide supplementary information for few-channel signals via a transfer learning-based model CD-EmotionNet, which consists of a base emotion model for efficient emotional feature extraction and a cross-device transfer learning strategy. This strategy helps to enhance emotion recognition performance on few-channel EEG data by utilizing knowledge learned from full-channel EEG data. To evaluate our cross-device EEG emotion transfer learning framework, we construct an emotion dataset containing paired 18-channel and 5-channel EEG signals from 25 subjects, as well as 5-channel EEG signals from 13 other subjects. Extensive experiments show that our framework outperforms state-of-the-art EEG emotion recognition methods by a large margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sajelsch完成签到,获得积分10
刚刚
辛禹完成签到,获得积分10
1秒前
2秒前
2秒前
hll完成签到,获得积分10
3秒前
刘世强发布了新的文献求助10
3秒前
YAN77完成签到,获得积分10
3秒前
4秒前
adljian完成签到,获得积分10
4秒前
4秒前
阿正嗖啪发布了新的文献求助10
5秒前
5秒前
sigui完成签到 ,获得积分10
5秒前
852应助贪玩绿草采纳,获得10
5秒前
5秒前
平常破茧发布了新的文献求助20
5秒前
小风发布了新的文献求助10
6秒前
7秒前
7秒前
feifei发布了新的文献求助10
8秒前
8秒前
diraczh完成签到,获得积分10
9秒前
今后应助znsmaqwdy采纳,获得10
9秒前
甄冰海完成签到,获得积分10
9秒前
小新关注了科研通微信公众号
9秒前
我爱学习发布了新的文献求助10
9秒前
10秒前
10秒前
livinglast发布了新的文献求助10
11秒前
12秒前
yimoyafan发布了新的文献求助10
12秒前
12秒前
12秒前
小毛球完成签到,获得积分10
13秒前
务实的寻凝完成签到 ,获得积分10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4564189
求助须知:如何正确求助?哪些是违规求助? 3988422
关于积分的说明 12350103
捐赠科研通 3659517
什么是DOI,文献DOI怎么找? 2016679
邀请新用户注册赠送积分活动 1051099
科研通“疑难数据库(出版商)”最低求助积分说明 938909