A multi-center study of ultrasound images using a fully automated segmentation architecture

计算机科学 人工智能 分割 布谷鸟搜索 模式识别(心理学) 多边形(计算机图形学) 计算机视觉 人工神经网络 图像分割 深度学习 算法 粒子群优化 电信 帧(网络)
作者
Tao Peng,Caishan Wang,Caiyin Tang,Yidong Gu,Jing Zhao,Quan Li,Jing Cai
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:145: 109925-109925 被引量:8
标识
DOI:10.1016/j.patcog.2023.109925
摘要

Accurate organ segmentation in ultrasound (US) images remains challenging because such images have inhomogeneous intensity distributions in their regions of interest (ROIs) and speckle and imaging artifacts. We address this problem by developing a coarse-to-refinement architecture for the segmentation of multiple organs (i.e., the prostate and kidney) in US image datasets from multiple centers. Our proposed architecture has the following four advantages: (1) it inherits the ability of the deep learning models to locate an ROI automatically while also using a principal curve approach to automatically fit a dataset center; (2) it takes advantage of a principal curve-based enhanced polygon searching method, which inherits the principal curve's characteristic to automatically approach the center of the dataset; (3) it incorporates quantum characteristics into a storage-based evolution network together to improve the global search performance of our method, which includes several improvements, such as a new quantum mutation module, a cuckoo search method, and global optimum schemes; (4) it incorporates a suitable mathematical model to smooth the contour of ROIs, which is explained by the parameters of a neural network model. Application of our method to US image datasets of multiple organs and from multiple centers demonstrates that it achieves satisfactory segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得30
1秒前
隐形曼青应助科研通管家采纳,获得30
1秒前
大模型应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
失眠醉易应助单身的觅儿采纳,获得10
1秒前
刘敏小七发布了新的文献求助10
1秒前
Akim应助跳跃萍采纳,获得10
2秒前
英姑应助火星上的迎天采纳,获得10
3秒前
3秒前
4秒前
积极的秋尽完成签到,获得积分10
4秒前
4秒前
科研通AI5应助超帅天曼采纳,获得10
5秒前
naturehome发布了新的文献求助10
5秒前
dildil发布了新的文献求助10
6秒前
pluto_完成签到,获得积分20
6秒前
6秒前
7秒前
Ferris完成签到,获得积分10
7秒前
7秒前
wr781586发布了新的文献求助50
8秒前
9秒前
略略略发布了新的文献求助10
9秒前
我如金匠完成签到,获得积分10
9秒前
accept应助跳跃盼波采纳,获得10
9秒前
10秒前
10秒前
10秒前
不懈奋进应助pluto_采纳,获得30
10秒前
10秒前
蜜HHH完成签到 ,获得积分10
11秒前
Lucas应助FJ采纳,获得10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790721
求助须知:如何正确求助?哪些是违规求助? 3335649
关于积分的说明 10275642
捐赠科研通 3052119
什么是DOI,文献DOI怎么找? 1675026
邀请新用户注册赠送积分活动 803005
科研通“疑难数据库(出版商)”最低求助积分说明 761007