Identification of T‐cell exhaustion‐related gene signature for predicting prognosis in glioblastoma multiforme

亚型 基因签名 免疫系统 生物 基因 下调和上调 转录组 基因表达谱 癌症研究 细胞 胶质瘤 微阵列分析技术 免疫学 基因表达 遗传学 计算机科学 程序设计语言
作者
Yue‐hui Liu,Hong‐quan Jin,Hai Liang Liu
出处
期刊:Journal of Cellular and Molecular Medicine [Wiley]
卷期号:27 (22): 3503-3513 被引量:3
标识
DOI:10.1111/jcmm.17927
摘要

Abstract Glioblastoma multiforme (GBM) is a highly malignant primary brain tumour with a poor prognosis in adults. Identifying biomarkers that can aid in the molecular classification and risk stratification of GBM is critical. Here, we conducted a transcriptional profiling analysis of T‐cell immunity in the tumour microenvironment of GBM patients and identified two novel T cell exhaustion (TEX)‐related GBM subtypes (termed TEX‐C1 and TEX‐C2) using the consensus clustering. Our multi‐omics analysis revealed distinct immunological, molecular and clinical characteristics for these two subtypes. Specifically, the TEX‐C1 subtype had higher infiltration levels of immune cells and expressed higher levels of immune checkpoint molecules than the TEX‐C2 subtype. Functional analysis revealed that upregulated genes in the TEX‐C1 subtype were significantly enriched in immune response and signal transduction pathways, and upregulated genes in the TEX‐C2 subtype were predominantly associated with cell fate and nervous system development pathways. Notably, patients with activated T‐cell activity status in the TEX‐C1 subgroup demonstrated a significantly worse prognosis than those with severe T cell exhaustion status in the TEX‐C2 subgroup. Finally, we proposed a machine‐learning‐derived novel gene signature comprising 12 TEX‐related genes (12TexSig) to indicate tumour subtyping. In the TCGA cohort, the 12TexSig demonstrated the ability to accurately predict the prognosis of GBM patients, and this prognostic value was further confirmed in two independent external cohorts. Taken together, our results suggest that the TEX‐derived subtyping and gene signature has the potential to serve as a clinically helpful biomarker for guiding the management of GBM patients, pending further prospective validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
问心完成签到,获得积分10
3秒前
gtx发布了新的文献求助10
4秒前
4秒前
徐小徐发布了新的文献求助10
6秒前
7秒前
木木发布了新的文献求助10
7秒前
跳跃的千亦完成签到 ,获得积分10
7秒前
916发布了新的文献求助10
9秒前
学谦完成签到 ,获得积分10
9秒前
所所应助Stroeve采纳,获得10
9秒前
鹿小娇完成签到,获得积分10
10秒前
鱼竿发布了新的文献求助10
11秒前
Sweety-完成签到 ,获得积分10
11秒前
甜心糖完成签到 ,获得积分10
11秒前
11秒前
努力完成签到,获得积分10
12秒前
木木完成签到,获得积分10
13秒前
Mercury完成签到 ,获得积分10
14秒前
香蕉觅云应助husker采纳,获得10
15秒前
大模型应助AY采纳,获得10
17秒前
mike2012完成签到 ,获得积分10
17秒前
bkagyin应助小杜采纳,获得10
18秒前
故意的茗发布了新的文献求助10
18秒前
21秒前
hc完成签到 ,获得积分10
22秒前
cecilycen完成签到,获得积分10
22秒前
我是老大应助温暖白容采纳,获得10
23秒前
12a发布了新的文献求助20
23秒前
24秒前
diu完成签到,获得积分10
26秒前
Orange应助深蓝采纳,获得20
26秒前
jx发布了新的文献求助10
27秒前
Stroeve发布了新的文献求助10
28秒前
29秒前
KAI完成签到 ,获得积分10
31秒前
32秒前
故意的茗完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3945137
求助须知:如何正确求助?哪些是违规求助? 3490092
关于积分的说明 11054950
捐赠科研通 3221116
什么是DOI,文献DOI怎么找? 1780408
邀请新用户注册赠送积分活动 865365
科研通“疑难数据库(出版商)”最低求助积分说明 799850