计算机科学
钥匙(锁)
依赖关系(UML)
时间序列
系列(地层学)
变量(数学)
特征(语言学)
事件(粒子物理)
模式识别(心理学)
时间点
人工智能
遮罩(插图)
数据挖掘
编码(内存)
条件概率
时态数据库
卡尔曼滤波器
机器学习
数学
统计
艺术
古生物学
数学分析
语言学
哲学
物理
计算机安全
量子力学
视觉艺术
生物
美学
作者
Chenxi Sun,Hongyan Li,Moxian Song,Derun Cai,Baofeng Zhang,Shenda Hong
标识
DOI:10.1016/j.patcog.2023.110075
摘要
Irregularly Sampled Time Series (ISTS) include partially observed feature vectors caused by the lack of temporal alignment across dimensions and the presence of variable time intervals. Especially in medical applications, because patients' examinations depend on their health status, observations in this event-based medical time series are nonuniformly distributed. When using deep learning models to classify ISTS, most work defines the problem that needs to be solved as alignment-caused data missing or nonuniformity-caused dependency change. However, they only modeled relationships between observed values, ignoring the fact that time is the independent variable for a time series. In this paper, we emphasize that irregularity is active, time-depended, and class-associated and is reflected in the Time Pattern (TP). To this end, this paper focused on the TP of ISTS for the first time, proposing a Time Pattern Reconstruction (TPR) method. It first encodes time information by the time encoding mechanism, then imputes values from time codes by the continuous-discrete Kalman network, selects key time points by the conditional masking mechanism, and finally classifies ISTS based on the reconstructed TP. Experiments on four real-world medical datasets and three other datasets show that TPR outperforms all baselines. We also show that TP can reveal biomarkers and key time points for diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI