Electric vehicle charging load prediction based on variational mode decomposition and Prophet-LSTM

电动汽车 模式(计算机接口) 自回归积分移动平均 希尔伯特-黄变换 计算机科学 电力负荷 人工神经网络 算法 分解 控制理论(社会学) 功率(物理) 电压 数学 人工智能 工程类 能量(信号处理) 时间序列 物理 统计 机器学习 电气工程 化学 有机化学 控制(管理) 量子力学 操作系统
作者
Nuo Cheng,Peng Zheng,Xiaofei Ruan,Zhenshan Zhu
出处
期刊:Frontiers in Energy Research [Frontiers Media]
卷期号:11 被引量:5
标识
DOI:10.3389/fenrg.2023.1297849
摘要

With the large-scale development of electric vehicles, the accuracy of electric vehicle charging load prediction is increasingly important for electric power system. Accurate EV charging load prediction is essential for the efficiency of electric system planning and economic operation of electric system. This paper proposes an electric vehicle charging load predicting method based on variational mode decomposition and Prophet-LSTM. Firstly, the variational mode decomposition algorithm is used to decompose the charging load into several intrinsic mode functions in order to explore the characteristics of EV charging load data. Secondly, in order to make full use of the advantages of various forecasting methods, the intrinsic mode functions are classified into low and high frequency sequences based on their over-zero rates. The high and low frequency sequences are reconstructed to obtain two frequency sequences. Then the LSTM neural network and Prophet model are used to predict the high and low frequency sequences, respectively. Finally, the prediction results obtained from the prediction of high frequency and low frequency sequences are combined to obtain the final prediction result. The assessment of the prediction results shows that the prediction accuracy of the prediction method proposed in this paper is improved compared to the traditional prediction methods, and the average absolute error is lower than that of ARIMA, LSTM and Prophet respectively by 7.57%, 8.73%, and 46.02%. The results show that the prediction method proposed in this paper has higher prediction accuracy than the traditional methods, and is effective in predicting EV charging load.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助thuuu采纳,获得10
2秒前
赘婿应助伶俐一曲采纳,获得30
2秒前
2秒前
蓝刺完成签到,获得积分10
3秒前
小会发布了新的文献求助10
3秒前
zsr发布了新的文献求助10
4秒前
Ava应助Chris采纳,获得10
4秒前
彭于晏应助遥知马采纳,获得10
8秒前
8秒前
9秒前
守墓人完成签到 ,获得积分10
9秒前
保持理智完成签到,获得积分10
9秒前
Jasper应助shanshan采纳,获得10
10秒前
莫西莫西完成签到,获得积分10
11秒前
12秒前
QL发布了新的文献求助10
13秒前
AteeqBaloch发布了新的文献求助10
13秒前
蓝橙完成签到,获得积分10
14秒前
HU发布了新的文献求助50
17秒前
QL完成签到,获得积分10
18秒前
大模型应助dummy采纳,获得10
18秒前
19秒前
liuyi发布了新的文献求助10
19秒前
HZQ应助科研通管家采纳,获得30
19秒前
卡其嘛发布了新的文献求助10
19秒前
自信的初之完成签到,获得积分10
19秒前
19秒前
无花果应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
19秒前
LL发布了新的文献求助10
20秒前
20秒前
21秒前
23秒前
25秒前
上官若男应助zhaoyali采纳,获得10
25秒前
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4182348
求助须知:如何正确求助?哪些是违规求助? 3718476
关于积分的说明 11720951
捐赠科研通 3398069
什么是DOI,文献DOI怎么找? 1864362
邀请新用户注册赠送积分活动 922206
科研通“疑难数据库(出版商)”最低求助积分说明 833873