A machine learning approach to discrimination of igneous rocks and ore deposits by zircon trace elements

锆石 火成岩 地质学 地球化学 跟踪(心理语言学) 矿物学 语言学 哲学
作者
Zi‐Hao Wen,Lin Li,Christopher L. Kirkland,Sheng‐Rong Li,Xiaojie Sun,Jiali Lei,Bo Xu,Zengqian Hou
出处
期刊:American Mineralogist [Mineralogical Society of America]
卷期号:109 (6): 1129-1142 被引量:7
标识
DOI:10.2138/am-2022-8899
摘要

Abstract The mineral zircon has a robust crystal structure, preserving a wealth of geological information through deep time. Traditionally, trace elements in magmatic and hydrothermal zircon have been employed to distinguish between different primary igneous or metallogenic growth fluids. However, classical approaches based on mineral geochemistry are not only time consuming but often ambiguous due to apparent compositional overlap for different growth environments. Here, we report a compilation of 11 004 zircon trace element measurements from 280 published articles, 7173 from crystals in igneous rocks, and 3831 from ore deposits. Geochemical variables include Hf, Th, U, Y, Ti, Nb, Ta, and the REEs. Igneous rock types include kimberlite, carbonatite, gabbro, basalt, andesite, diorite, granodiorite, dacite, granite, rhyolite, and pegmatite. Ore types include porphyry Cu-Au-Mo, skarn-type polymetallic, intrusion-related Au, skarn-type Fe-Cu, and Nb-Ta deposits. We develop Decision Tree, XGBoost, and Random Forest algorithms with this zircon geochemical information to predict lithology or deposit type. The F1-score indicates that the Random Forest algorithm has the best predictive performance for the classification of both lithology and deposit type. The eight most important zircon elements from the igneous rock (Hf, Nb, Ta, Th, U, Eu, Ti, Lu) and ore deposit (Y, Eu, Hf, U, Ce, Ti, Th, Lu) classification models, yielded reliable F1-scores of 0.919 and 0.891, respectively. We present a web page portal (http://60.205.170.161:8001/) for the classifier and employ it to a case study of Archean igneous rocks in Western Australia and ore deposits in Southwest China. The machine learning classifier successfully determines the known primary lithology of the samples, demonstrating significant promise as a classification tool where host rock and ore deposit types are unknown.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈应助hahah采纳,获得10
刚刚
1秒前
Edward_Hu完成签到,获得积分10
1秒前
威武从霜发布了新的文献求助10
1秒前
如星完成签到 ,获得积分10
2秒前
2秒前
2秒前
pny发布了新的文献求助10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
ccm应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
顺利大门应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
ccm应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
4秒前
ding应助科研通管家采纳,获得10
4秒前
渡花应助科研通管家采纳,获得10
4秒前
chentao发布了新的文献求助10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI6应助承一采纳,获得10
5秒前
小蘑菇应助甘楽采纳,获得10
5秒前
搜集达人应助积极毛巾采纳,获得10
5秒前
哈哈镜阿姐应助读二白采纳,获得10
5秒前
Criss0916发布了新的文献求助10
5秒前
crazy发布了新的文献求助10
5秒前
5秒前
6秒前
Jim发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642700
求助须知:如何正确求助?哪些是违规求助? 4759529
关于积分的说明 15018532
捐赠科研通 4801206
什么是DOI,文献DOI怎么找? 2566533
邀请新用户注册赠送积分活动 1524546
关于科研通互助平台的介绍 1484071