Differentiating adrenal metastases from benign lesions with multiphase CT imaging: Deep learning could play an active role in assisting radiologists

医学 接收机工作特性 曲线下面积 放射科 回顾性队列研究 曲线下面积 诊断准确性 核医学 内科学 药代动力学
作者
Changyi Ma,Bao Feng,Fan Lin,Yan Lei,Kuncai Xu,Jin Cui,Yu Liu,Wansheng Long,Enming Cui
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:169: 111169-111169 被引量:2
标识
DOI:10.1016/j.ejrad.2023.111169
摘要

Objectives To develop and externally validate multiphase CT-based deep learning (DL) models for differentiating adrenal metastases from benign lesions. Materials and methods This retrospective two-center study included 1146 adrenal lesions from 1059 patients who underwent multiphase CT scanning between January 2008 and March 2021. The study encompassed 564 surgically confirmed adenomas, along with 135 benign lesions and 447 metastases confirmed by observation. DL models based on multiphase CT images were developed, validated and tested. The diagnostic performance of the classification models, imaging phases and radiologists with or without DL were compared using accuracy (ACC) and receiver operating characteristic (ROC) curves. Integrated discrimination improvement (IDI) analysis and the DeLong test were used to compare the area under the curve (AUC) among models. Decision curve analysis (DCA) was used to assess the clinical usefulness of the predictive models. Results The DL signature based on LASSO (DLSL) had a higher AUC than that of the other classification models (IDI > 0, P < 0.05). Furthermore, the precontrast phase (PCP)-based DLSL performed best in the independent external validation (AUC = 0.881, ACC = 82.9 %) and clinical test cohorts (AUC = 0.790, ACC = 70.4 %), outperforming DLSL based on the other single-phase or three-phase images (IDI > 0, P < 0.05). DCA demonstrated that PCP-based DLSL provided a higher net benefit (0.01–0.95). The diagnostic performance led to statistically significant improvements when radiologists incorporated the DL model, with the AUC improving by 0.056–0.159 and the ACC improving by 0.069–0.178 (P < 0.05). Conclusion The DL model based on PCP CT images performed acceptably in differentiating adrenal metastases from benign lesions, and it may assist radiologists in accurate tumor staging for patients with a history of extra-adrenal malignancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
6秒前
8秒前
Wlin发布了新的文献求助20
8秒前
青橘短衫发布了新的文献求助10
8秒前
oxs完成签到 ,获得积分10
10秒前
小蘑菇应助ronnie采纳,获得10
10秒前
坤坤发布了新的文献求助10
11秒前
14秒前
PatriciaYJ完成签到 ,获得积分10
14秒前
英俊的铭应助gyh采纳,获得10
14秒前
不要再忘登陆密码了完成签到,获得积分10
15秒前
Ava应助坤坤采纳,获得10
16秒前
汉堡包应助源源采纳,获得10
18秒前
19秒前
21秒前
坤坤完成签到,获得积分10
22秒前
Axs发布了新的文献求助200
25秒前
25秒前
heroiheart'发布了新的文献求助10
26秒前
tianxiong完成签到,获得积分10
27秒前
科研通AI2S应助翁若翠采纳,获得10
27秒前
29秒前
30秒前
木子水告完成签到,获得积分10
31秒前
标致的小天鹅完成签到,获得积分20
32秒前
洪山老狗发布了新的文献求助10
35秒前
35秒前
37秒前
顾矜应助安静小懒猪采纳,获得10
37秒前
思源应助标致的小天鹅采纳,获得10
38秒前
39秒前
kk发布了新的文献求助10
39秒前
发论文发布了新的文献求助10
40秒前
41秒前
要减肥的尔安完成签到,获得积分10
41秒前
眼睛大背包完成签到,获得积分10
42秒前
42秒前
李大白完成签到 ,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778900
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218406
捐赠科研通 3039488
什么是DOI,文献DOI怎么找? 1668198
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440