Identify production area, growth mode, species, and grade of Astragali Radix using metabolomics “big data” and machine learning

代谢组学 大数据 根(腹足类) 传统医学 生产(经济) 化学 色谱法 生物 计算机科学 医学 数据挖掘 植物 宏观经济学 经济
作者
Jing Wu,Shaoqian Deng,Xinyue Yu,Y S Wu,Xiaoyi Hua,Zunjian Zhang,Yin Huang
出处
期刊:Phytomedicine [Elsevier BV]
卷期号:123: 155201-155201 被引量:7
标识
DOI:10.1016/j.phymed.2023.155201
摘要

Astragali Radix (AR) is a widely used herbal medicine. The quality of AR is influenced by several key factors, including the production area, growth mode, species, and grade. However, the markers currently used to distinguish these factors primarily focus on secondary metabolites, and their validation on large-scale samples is lacking. This study aims to discover reliable markers and develop classification models for identifying the production area, growth mode, species, and grade of AR. A total of 366 batches of AR crude slices were collected from six provinces in China and divided into learning (n = 191) and validation (n = 175) sets. Three ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods were developed and validated for determining 22 primary and 10 secondary metabolites in AR methanol extract. Based on the quantification data, seven machine learning algorithms, such as Nearest Neighbors and Gradient Boosted Trees, were applied to screen the potential markers and build the classification models for identifying the four factors associated with AR quality. Our analysis revealed that secondary metabolites (e.g., astragaloside IV, calycosin-7-O-β-D-glucoside, and ononin) played a crucial role in evaluating AR quality, particularly in identifying the production area and species. Additionally, fatty acids (e.g., behenic acid and lignoceric acid) were vital in determining the growth mode of AR, while amino acids (e.g., alanine and phenylalanine) were helpful in distinguishing different grades. With both primary and secondary metabolites, the Nearest Neighbors algorithm-based model was constructed for identifying each factor of AR, achieving good classification accuracy (>70%) on the validation set. Furthermore, a panel of four metabolites including ononin, astragaloside II, pentadecanoic acid, and alanine, allowed for simultaneous identification of all four factors of AR, offering an accuracy of 86.9%. Our findings highlight the potential of integrating large-scale targeted metabolomics and machine learning approaches to accurately identify the quality-associated factors of AR. This study opens up possibilities for enhancing the evaluation of other herbal medicines through similar methodologies, and further exploration in this area is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
万能图书馆应助抹茶肥肠采纳,获得10
3秒前
tian发布了新的文献求助10
4秒前
QR发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
7秒前
科研通AI5应助老木虫采纳,获得10
7秒前
8秒前
sun2发布了新的文献求助10
11秒前
pluto应助学术laji采纳,获得10
12秒前
jenningseastera应助LZX采纳,获得10
14秒前
科研通AI2S应助tian采纳,获得10
15秒前
jenningseastera应助王恒采纳,获得10
16秒前
堀江真夏完成签到 ,获得积分10
16秒前
17秒前
20秒前
jenningseastera应助草木采纳,获得10
21秒前
白许四十完成签到,获得积分10
21秒前
玉碎星发布了新的文献求助10
22秒前
舒适的冰凡完成签到,获得积分10
24秒前
yoasobi2334完成签到,获得积分10
24秒前
jxx完成签到,获得积分10
26秒前
曾淋发布了新的文献求助30
26秒前
木cheng发布了新的文献求助10
27秒前
BY完成签到,获得积分10
27秒前
Lucas应助sun2采纳,获得10
28秒前
科研通AI2S应助LZX采纳,获得10
33秒前
jiafang完成签到,获得积分10
34秒前
李健的小迷弟应助Jane采纳,获得30
37秒前
39秒前
希法完成签到,获得积分10
39秒前
glowworm完成签到 ,获得积分10
42秒前
43秒前
木木完成签到,获得积分10
45秒前
45秒前
111完成签到,获得积分10
49秒前
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778099
求助须知:如何正确求助?哪些是违规求助? 3323764
关于积分的说明 10215701
捐赠科研通 3038943
什么是DOI,文献DOI怎么找? 1667723
邀请新用户注册赠送积分活动 798368
科研通“疑难数据库(出版商)”最低求助积分说明 758339