Identify production area, growth mode, species, and grade of Astragali Radix using metabolomics “big data” and machine learning

代谢组学 大数据 根(腹足类) 传统医学 生产(经济) 化学 色谱法 生物 计算机科学 医学 数据挖掘 植物 宏观经济学 经济
作者
Jing Wu,Shaoqian Deng,Xinyue Yu,Y S Wu,Xiaoyi Hua,Zunjian Zhang,Yin Huang
出处
期刊:Phytomedicine [Elsevier BV]
卷期号:123: 155201-155201 被引量:13
标识
DOI:10.1016/j.phymed.2023.155201
摘要

Astragali Radix (AR) is a widely used herbal medicine. The quality of AR is influenced by several key factors, including the production area, growth mode, species, and grade. However, the markers currently used to distinguish these factors primarily focus on secondary metabolites, and their validation on large-scale samples is lacking. This study aims to discover reliable markers and develop classification models for identifying the production area, growth mode, species, and grade of AR. A total of 366 batches of AR crude slices were collected from six provinces in China and divided into learning (n = 191) and validation (n = 175) sets. Three ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods were developed and validated for determining 22 primary and 10 secondary metabolites in AR methanol extract. Based on the quantification data, seven machine learning algorithms, such as Nearest Neighbors and Gradient Boosted Trees, were applied to screen the potential markers and build the classification models for identifying the four factors associated with AR quality. Our analysis revealed that secondary metabolites (e.g., astragaloside IV, calycosin-7-O-β-D-glucoside, and ononin) played a crucial role in evaluating AR quality, particularly in identifying the production area and species. Additionally, fatty acids (e.g., behenic acid and lignoceric acid) were vital in determining the growth mode of AR, while amino acids (e.g., alanine and phenylalanine) were helpful in distinguishing different grades. With both primary and secondary metabolites, the Nearest Neighbors algorithm-based model was constructed for identifying each factor of AR, achieving good classification accuracy (>70%) on the validation set. Furthermore, a panel of four metabolites including ononin, astragaloside II, pentadecanoic acid, and alanine, allowed for simultaneous identification of all four factors of AR, offering an accuracy of 86.9%. Our findings highlight the potential of integrating large-scale targeted metabolomics and machine learning approaches to accurately identify the quality-associated factors of AR. This study opens up possibilities for enhancing the evaluation of other herbal medicines through similar methodologies, and further exploration in this area is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
馥芮白发布了新的文献求助10
1秒前
1秒前
林夕完成签到 ,获得积分10
1秒前
bkagyin应助清爽访曼采纳,获得10
1秒前
1秒前
2秒前
2秒前
guiguibang完成签到,获得积分10
2秒前
xxlj完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
bingchem发布了新的文献求助10
4秒前
沈佳宁完成签到,获得积分10
4秒前
4秒前
馆长应助无敌医学生采纳,获得50
4秒前
高大迎曼发布了新的文献求助10
5秒前
5秒前
肖遥发布了新的文献求助10
5秒前
LONG完成签到 ,获得积分10
5秒前
hx完成签到 ,获得积分10
6秒前
7秒前
樂楽发布了新的文献求助10
7秒前
7秒前
朴素的傲南完成签到,获得积分10
7秒前
haha发布了新的文献求助10
8秒前
夏果果发布了新的文献求助10
8秒前
juan发布了新的文献求助10
8秒前
8秒前
司徒不二发布了新的文献求助10
8秒前
奋斗的威发布了新的文献求助10
8秒前
YY完成签到 ,获得积分10
9秒前
科研通AI5应助小舀采纳,获得10
9秒前
思源应助顾北采纳,获得10
9秒前
jack完成签到,获得积分10
10秒前
11秒前
Ava应助123采纳,获得10
11秒前
小木没有烦恼完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4697977
求助须知:如何正确求助?哪些是违规求助? 4067266
关于积分的说明 12574668
捐赠科研通 3766799
什么是DOI,文献DOI怎么找? 2080239
邀请新用户注册赠送积分活动 1108320
科研通“疑难数据库(出版商)”最低求助积分说明 986664