A Rotating Machinery Fault Diagnosis Method Based on Multi-Sensor Fusion and ECA-CNN

卷积神经网络 计算机科学 断层(地质) 人工智能 模式识别(心理学) 特征提取 频道(广播) 特征(语言学) 传感器融合 一般化 深度学习 领域(数学) 电信 数学分析 语言学 哲学 数学 地震学 纯数学 地质学
作者
Hongxing Wang,Hua Zhu,Huafeng Li
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 106443-106455 被引量:8
标识
DOI:10.1109/access.2023.3320065
摘要

Fault diagnosis is critical to maintaining the performance of rotating machinery and ensuring the safe operation of the equipment. Convolutional neural networks (CNNs) have recently shown great potential with excellent automatic feature learning and nonlinear mapping abilities in the field of rotating machinery fault diagnosis. However, the CNN-based methods still suffer from some defects, such as inadequate data utilization and uneconomical computational efficiency, which limits further improvement of diagnosis performance. Therefore, this paper proposes a fault diagnosis method based on multi-sensor fusion and Convolutional Neural Network with Efficient Channel Attention (ECA-CNN). First, multi-sensor vibration signals are sampled, converted, and channel fused into multi-channel images with rich and comprehensive features. Then, the efficient channel attention mechanism is introduced into CNN to increase the feature learning ability by adaptively scoring and assigning weights to the channel features. The ECA-CNN is proposed to learn representative fault features from multi-sensor fusion data to achieve fault identification. Finally, two experimental cases on the bearing and gearbox datasets prove that the proposed method has excellent performance, strong generalization capability, and high computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡冬瓜发布了新的文献求助10
1秒前
FashionBoy应助jungle采纳,获得20
4秒前
4秒前
6秒前
夏末未央完成签到,获得积分10
7秒前
魔幻凡梅完成签到,获得积分10
9秒前
serendipity发布了新的文献求助10
9秒前
13秒前
Hello应助dabaigou采纳,获得10
13秒前
14秒前
阿不思关注了科研通微信公众号
14秒前
15秒前
无尘泪完成签到,获得积分10
16秒前
zz完成签到 ,获得积分10
16秒前
17秒前
内向的火车完成签到 ,获得积分10
18秒前
滴迪氐媂发布了新的文献求助10
19秒前
Chrysan发布了新的文献求助10
20秒前
20秒前
22秒前
许诺一场大雨完成签到,获得积分10
22秒前
22秒前
aspiling发布了新的文献求助10
23秒前
dara发布了新的文献求助10
23秒前
科研通AI5应助呆萌的正豪采纳,获得10
24秒前
Chrysan完成签到,获得积分10
25秒前
小二郎应助sweet采纳,获得10
27秒前
jungle发布了新的文献求助20
27秒前
yyy完成签到,获得积分10
28秒前
28秒前
28秒前
hui关闭了hui文献求助
30秒前
aspiling完成签到,获得积分10
30秒前
充电宝应助ccmxigua采纳,获得10
30秒前
30秒前
单身的傲晴完成签到,获得积分10
31秒前
王康键发布了新的文献求助10
32秒前
33秒前
渭阳野士完成签到,获得积分10
34秒前
AlinaLee发布了新的文献求助15
35秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Progress in Inorganic Chemistry 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825716
求助须知:如何正确求助?哪些是违规求助? 3367860
关于积分的说明 10448391
捐赠科研通 3087329
什么是DOI,文献DOI怎么找? 1698619
邀请新用户注册赠送积分活动 816861
科研通“疑难数据库(出版商)”最低求助积分说明 769973