Bridging the Gap Between Vision Transformers and Convolutional Neural Networks on Small Datasets

计算机科学 卷积神经网络 安全性令牌 特征学习 归纳偏置 人工智能 嵌入 桥接(联网) 模式识别(心理学) 频道(广播) 代表(政治) 机器学习 多任务学习 任务(项目管理) 工程类 政治 计算机安全 计算机网络 法学 系统工程 政治学
作者
Zhiying Lu,Hongtao Xie,Chuanbin Liu,Yongdong Zhang
出处
期刊:Cornell University - arXiv 被引量:24
标识
DOI:10.48550/arxiv.2210.05958
摘要

There still remains an extreme performance gap between Vision Transformers (ViTs) and Convolutional Neural Networks (CNNs) when training from scratch on small datasets, which is concluded to the lack of inductive bias. In this paper, we further consider this problem and point out two weaknesses of ViTs in inductive biases, that is, the spatial relevance and diverse channel representation. First, on spatial aspect, objects are locally compact and relevant, thus fine-grained feature needs to be extracted from a token and its neighbors. While the lack of data hinders ViTs to attend the spatial relevance. Second, on channel aspect, representation exhibits diversity on different channels. But the scarce data can not enable ViTs to learn strong enough representation for accurate recognition. To this end, we propose Dynamic Hybrid Vision Transformer (DHVT) as the solution to enhance the two inductive biases. On spatial aspect, we adopt a hybrid structure, in which convolution is integrated into patch embedding and multi-layer perceptron module, forcing the model to capture the token features as well as their neighboring features. On channel aspect, we introduce a dynamic feature aggregation module in MLP and a brand new "head token" design in multi-head self-attention module to help re-calibrate channel representation and make different channel group representation interacts with each other. The fusion of weak channel representation forms a strong enough representation for classification. With this design, we successfully eliminate the performance gap between CNNs and ViTs, and our DHVT achieves a series of state-of-the-art performance with a lightweight model, 85.68% on CIFAR-100 with 22.8M parameters, 82.3% on ImageNet-1K with 24.0M parameters. Code is available at https://github.com/ArieSeirack/DHVT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅黑裤完成签到,获得积分10
刚刚
小白发布了新的文献求助10
刚刚
xiayongguo完成签到 ,获得积分10
3秒前
LingYun完成签到,获得积分10
3秒前
fogsea完成签到,获得积分0
3秒前
可乐加冰完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
研友_85YNe8完成签到,获得积分10
4秒前
abab小王完成签到,获得积分10
4秒前
高兴的海白完成签到,获得积分10
5秒前
5秒前
Money发布了新的文献求助10
5秒前
老高完成签到 ,获得积分10
6秒前
6秒前
swimming完成签到 ,获得积分10
6秒前
knight7m完成签到 ,获得积分10
7秒前
昏睡的白桃完成签到,获得积分10
7秒前
龙抬头完成签到,获得积分10
7秒前
soul完成签到,获得积分10
8秒前
HZN完成签到,获得积分10
8秒前
科研人完成签到,获得积分10
9秒前
琅琊为刃完成签到,获得积分10
9秒前
霭祢完成签到 ,获得积分10
10秒前
Underwood111完成签到,获得积分10
11秒前
小白完成签到,获得积分10
11秒前
star完成签到,获得积分10
11秒前
清水小镇完成签到,获得积分10
11秒前
XCYIN发布了新的文献求助10
11秒前
mendicant完成签到,获得积分10
12秒前
程新亮完成签到 ,获得积分10
12秒前
12秒前
13秒前
内向映天完成签到 ,获得积分10
13秒前
rayqiang完成签到,获得积分10
13秒前
中中完成签到,获得积分10
14秒前
黄花完成签到 ,获得积分10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得150
14秒前
心静听炊烟完成签到 ,获得积分10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Estimation of the Maximum Design Effective Temperature for Steel Box Girder Bridges Considering Asphalt Thickness of Concrete Deck 800
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079918
求助须知:如何正确求助?哪些是违规求助? 4298008
关于积分的说明 13389509
捐赠科研通 4121393
什么是DOI,文献DOI怎么找? 2257128
邀请新用户注册赠送积分活动 1261397
关于科研通互助平台的介绍 1195520