Time and Memory Efficient Large-Scale Canonical Correlation Analysis in Fourier Domain

典型相关 计算机科学 特征向量 傅里叶变换 算法 投影(关系代数) 比例(比率) 判别式 人工智能 数学 量子力学 物理 数学分析
作者
Xiang‐Jun Shen,Zhaorui Xu,Liangjun Wang,Zechao Li
标识
DOI:10.1145/3503161.3547988
摘要

Canonical correlation analysis (CCA) is a linear correlation analysis technique used widely in the statistics and machine learning community. However, the high complexity involved in pursuing eigenvector lays a heavy burden on the memory and computational time, making CCA nearly impractical in large-scale cases. In this paper, we attempt to overcome this issue by representing the data in the Fourier domain. Thanks to the data characteristic of pattern repeatability, one can translate projection-seeking of CCA into choosing some discriminative Fourier bases with only element-wise dot product and sum operations, without time-consuming eigenvector computation. Another merit of this scheme is that the eigenvalues can be approximated asymptotically in contrast to existing methods. Specifically, the eigenvalues can be estimated progressively, and the accuracy goes up as the number of data samples increases monotonously. This makes it possible to use partial data samples to obtain satisfactory accuracy. All the facts above make the proposed method extremely fast and memory efficient. Experimental results on several large-scale datasets, such as MNIST 8M, X-RAY MICROBEAM SPEECH, and TWITTER USERS Data, demonstrate the superiority of the proposed algorithm over SOTA large-scale CCA methods, as our proposed method achieves almost same accuracy with the training time being 1,000 times faster than SOTA methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁博发布了新的文献求助10
1秒前
Dean应助笑点低的碧琴采纳,获得30
2秒前
wisper完成签到,获得积分10
2秒前
酷波er应助数峰青采纳,获得10
2秒前
彭于晏应助李冰冰采纳,获得10
2秒前
2秒前
整齐的忆彤完成签到,获得积分10
3秒前
3秒前
4秒前
wonhui发布了新的文献求助10
4秒前
4秒前
科研通AI6应助GXH采纳,获得10
4秒前
酷波er应助许家星采纳,获得10
5秒前
彭于晏应助yoga采纳,获得10
5秒前
8秒前
吴昊东发布了新的文献求助10
8秒前
乐乐应助难过的谷芹采纳,获得30
8秒前
情怀应助丁博采纳,获得10
9秒前
优雅老六应助司马逍遥采纳,获得10
9秒前
10秒前
10秒前
Rylee发布了新的文献求助10
10秒前
清脆的哈密瓜完成签到,获得积分20
11秒前
XCI完成签到,获得积分10
11秒前
133发布了新的文献求助10
12秒前
wonhui完成签到,获得积分10
12秒前
13秒前
华仔应助徐妮采纳,获得10
13秒前
JasonSun发布了新的文献求助10
14秒前
张达发布了新的文献求助10
14秒前
14秒前
852应助大白采纳,获得10
15秒前
独特的春完成签到,获得积分10
16秒前
16秒前
希望天下0贩的0应助Belinda采纳,获得10
16秒前
QY完成签到,获得积分10
17秒前
vae发布了新的文献求助10
18秒前
18秒前
天天快乐应助biohydrogel采纳,获得10
19秒前
小耿完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4563796
求助须知:如何正确求助?哪些是违规求助? 3988165
关于积分的说明 12349069
捐赠科研通 3659171
什么是DOI,文献DOI怎么找? 2016304
邀请新用户注册赠送积分活动 1050784
科研通“疑难数据库(出版商)”最低求助积分说明 938722