已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Boosting Performance in Data Science Competition Using Topic-Driven Analytics: Evidence From Recommendation System Design on Kaggle

Boosting(机器学习) 众包 竞赛(生物学) 计算机科学 数据科学 分析 推荐系统 关系(数据库) 大数据 商业分析 主题模型 商业模式 知识管理 万维网 人工智能 电子商务 营销 数据挖掘 业务 生态学 生物
作者
Libo Li
出处
期刊:IEEE Transactions on Engineering Management [Institute of Electrical and Electronics Engineers]
卷期号:71: 3016-3027 被引量:1
标识
DOI:10.1109/tem.2022.3199688
摘要

Research developments in the recommendation system and electronic commerce literature present more accurate and comprehensive recommendation system solutions.However, while these developments add new features to the recommendation systems, the question of whether a novel solution would excel in practice remains.Open innovation and crowdsourcing platforms are becoming an arena for designers to test their solutions in business competitions.We show how structural topical modeling identifies topical themes that improve contestant performance using forum message data during the competition period.Our topic modeling analysis identifies technological and business issues that emerge in recommendation system development.An econometric framework further investigates the link between topic distribution and performance.The multi-period difference-in-differences estimator reports no significant statistical relation when linking all message communications to the performance.However, topic-dominant and topic-dispersed messages are both found to positively and significantly impact performance.Our result shows that structural topical modeling has an essential role to critically examine the most valuable message links to boost performance.Stakeholders may prioritize the messages with specific topics and/or a mixture of topics.We provide research and practical implications for researchers, business analysts, developers, and managers to improve their experiences when engaging in recommendation system design on platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助ouo采纳,获得10
刚刚
1秒前
1秒前
QJ0发布了新的文献求助10
1秒前
Akim应助昆1231231231采纳,获得10
3秒前
爱吃烧鸭粉的小哥哥完成签到 ,获得积分10
3秒前
4秒前
jia发布了新的文献求助10
5秒前
墨薄凉完成签到 ,获得积分10
6秒前
充电中321完成签到,获得积分10
8秒前
Zero完成签到,获得积分10
9秒前
13秒前
16秒前
16秒前
3949870237发布了新的文献求助10
18秒前
22秒前
Honor完成签到 ,获得积分10
23秒前
3949870237完成签到,获得积分20
23秒前
23秒前
Neuronguy发布了新的文献求助10
23秒前
jia完成签到,获得积分10
23秒前
cece发布了新的文献求助10
25秒前
by发布了新的文献求助10
25秒前
wang完成签到 ,获得积分10
28秒前
古渡应助科研通管家采纳,获得10
28秒前
古渡应助科研通管家采纳,获得10
28秒前
传奇3应助科研通管家采纳,获得10
28秒前
Pauline完成签到 ,获得积分10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
古渡应助科研通管家采纳,获得10
29秒前
Neuronguy完成签到,获得积分10
29秒前
30秒前
32秒前
bkagyin应助无私妙菡采纳,获得10
33秒前
CC完成签到,获得积分10
36秒前
花陵发布了新的文献求助10
37秒前
41秒前
科研通AI6应助by采纳,获得10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469887
求助须知:如何正确求助?哪些是违规求助? 4572878
关于积分的说明 14337540
捐赠科研通 4499791
什么是DOI,文献DOI怎么找? 2465313
邀请新用户注册赠送积分活动 1453731
关于科研通互助平台的介绍 1428270