New fuel consumption model considering vehicular speed, acceleration, and jerk

混蛋 加速度 燃料效率 模拟 能源消耗 汽车工程 控制理论(社会学) 计算机科学 二次方程 功率消耗 工程类 数学 功率(物理) 人工智能 电气工程 物理 经典力学 控制(管理) 量子力学 几何学
作者
Licheng Zhang,Kun Peng,Xiangmo Zhao,Asad J. Khattak
出处
期刊:Journal of Intelligent Transportation Systems [Informa]
卷期号:27 (2): 174-186 被引量:19
标识
DOI:10.1080/15472450.2021.2000406
摘要

A novel computational model for the volatile state was developed to improve eco-driving in intelligent transportation systems (ITS). First, the volatile state was divided into eight types using vehicle acceleration and jerk as delineating criteria. Data analysis showed that each jerk type had a different proportion and contribution level to fuel consumption. Next, the model was created by considering eight instantaneous driving decisions as represented by vehicle speed, acceleration, and jerk. The model input included vehicle speed multiplied by acceleration, with jerk as a classifier. The model was calibrated using quadratic polynomial fitting, and validated using another portion of the data. Finally, predictions were compared with the widely used Vehicle Specific Power (VSP) model and the Virginia Tech Microscopic (VT-Micro) model to evaluate model performance. The new model thoroughly captured the measured fuel consumption and provided more accurate predictions in new routes than the above-mentioned models. The mean absolute percentage error value of the new model was ∼4.9% and 3.2% lower than those of the VSP and VT-Micro models, respectively. The determinant coefficient value was up to 95.8%, which was ∼4.6% and 8.5% higher than those of the VSP and VT-Micro models, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Persepolis发布了新的文献求助10
刚刚
marker_发布了新的文献求助10
刚刚
刚刚
聪慧水池完成签到,获得积分10
刚刚
阔达的唇膏完成签到,获得积分10
1秒前
CA发布了新的文献求助10
1秒前
yznfly应助自觉笑珊采纳,获得30
1秒前
共享精神应助lu采纳,获得10
1秒前
1秒前
科研通AI6应助完美毛豆采纳,获得10
1秒前
niNe3YUE应助完美毛豆采纳,获得10
1秒前
科研通AI2S应助完美毛豆采纳,获得10
2秒前
jnum1完成签到,获得积分10
2秒前
sweettt3发布了新的文献求助10
2秒前
无花果应助拉长的大侠采纳,获得10
2秒前
完美世界应助书翊采纳,获得10
3秒前
舒服的鸽子完成签到,获得积分10
3秒前
积极涵阳发布了新的文献求助10
3秒前
Fashioner8351完成签到,获得积分10
3秒前
3秒前
3秒前
wangwangxiao完成签到 ,获得积分10
3秒前
晶晶完成签到,获得积分20
3秒前
安新筠发布了新的文献求助10
4秒前
jun完成签到,获得积分10
4秒前
Lucas应助乐观小之采纳,获得10
4秒前
4秒前
温暖的颜演完成签到,获得积分10
4秒前
5秒前
Jason完成签到,获得积分10
5秒前
6秒前
思源应助sssssss采纳,获得10
6秒前
雪雪发布了新的文献求助10
6秒前
疯狂的山楂完成签到 ,获得积分10
7秒前
未雨完成签到,获得积分10
7秒前
Akim应助wf采纳,获得10
7秒前
sunsun10086完成签到 ,获得积分10
8秒前
琦琦完成签到 ,获得积分10
8秒前
8秒前
科目三应助xanderxue采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710603
求助须知:如何正确求助?哪些是违规求助? 5199800
关于积分的说明 15261321
捐赠科研通 4863194
什么是DOI,文献DOI怎么找? 2610478
邀请新用户注册赠送积分活动 1560802
关于科研通互助平台的介绍 1518423