Development and optimization of a LC-MS based multi-attribute method (MAM) workflow for characterization of therapeutic Fc-fusion protein

去酰胺 工作流程 生物制药 关键质量属性 计算机科学 色谱法 化学 生化工程 计算生物学 生物技术 数据库 工程类 生物化学 生物 粒径 物理化学
作者
Amita Puranik,Pratap Rasam,Prajakta Dandekar,Ratnesh Jain
出处
期刊:Analytical Biochemistry [Elsevier BV]
卷期号:660: 114969-114969 被引量:10
标识
DOI:10.1016/j.ab.2022.114969
摘要

The growing complexity of novel biopharmaceutical formats, such as Fc-fusion proteins, in increasingly competitive environment has highlighted the need of high-throughput analytical platforms. Multi-attribute method (MAM) is an emerging analytical technology that utilizes liquid chromatography coupled with mass spectrometry to monitor critical quality attributes (CQAs) in biopharmaceuticals. MAM is intended to supplement or replace the conventional chromatographic and electrophoretic approaches used for quality control and drug release purpose. In this investigation, we have developed an agile sample preparation approach for deploying MAM workflow for a complex VEGFR-targeted therapeutic Fc-fusion protein. Initially, a systematic time course evaluation of tryptic digestion step was performed to achieve maximum amino acid sequence coverage of >96.5%, in a short duration of 2 h, with minimum assay artifacts. This approach facilitated precise identification of five sites of N-glycosylation with successful monitoring of other CQAs such as deamidation, oxidation, etc. Subsequently, the developed MAM workflow with suitable tryptic digestion time was qualified according to the International council for harmonisation (i.e. ICH) Q2R1 guidelines for method validation. Post-validation, the analytical workflow was also evaluated for its capability to identify unknown moieties, termed as 'New Peak Detection' (i.e. NPD), and assess fold change between the reference and non-reference samples, in a representative investigation of pH stress study. The study, thus, demonstrated the suitability of the MAM workflow for characterization of heavily glycosylated Fc-fusion proteins. Moreover, its NPD feature could offer an all-encompassing view if applied for forced degradation and stability studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小東完成签到,获得积分10
2秒前
所所应助樊珩采纳,获得10
2秒前
CipherSage应助木木采纳,获得10
5秒前
他也蓝完成签到,获得积分10
7秒前
7秒前
0000完成签到 ,获得积分10
8秒前
8秒前
科研通AI5应助樊珩采纳,获得10
9秒前
周恩毅完成签到,获得积分10
10秒前
卡卡咧咧发布了新的文献求助10
12秒前
13秒前
13秒前
科研通AI5应助樊珩采纳,获得10
15秒前
xinxin发布了新的文献求助10
16秒前
仙笛童神完成签到 ,获得积分10
18秒前
哇哈哈发布了新的文献求助10
18秒前
小羊佳佳完成签到,获得积分10
19秒前
Ava应助LiLYzY_采纳,获得10
19秒前
喜悦的钢笔完成签到,获得积分10
21秒前
27秒前
守一完成签到,获得积分10
29秒前
31秒前
Orange应助哇哈哈采纳,获得10
32秒前
32秒前
科研通AI2S应助姚怜南采纳,获得30
34秒前
LT发布了新的文献求助10
34秒前
许愿完成签到 ,获得积分10
35秒前
xxk发布了新的文献求助10
38秒前
38秒前
39秒前
戴戴关注了科研通微信公众号
39秒前
mumu完成签到 ,获得积分10
41秒前
42秒前
ff0110完成签到,获得积分10
43秒前
44秒前
xxk完成签到,获得积分20
46秒前
spring完成签到 ,获得积分10
48秒前
48秒前
lu完成签到 ,获得积分10
50秒前
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778950
求助须知:如何正确求助?哪些是违规求助? 3324631
关于积分的说明 10218960
捐赠科研通 3039564
什么是DOI,文献DOI怎么找? 1668356
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758440