A novel MRI-based habitat analysis and deep learning for predicting perineural invasion in prostate cancer: a two-center study

前列腺癌 旁侵犯 外科肿瘤学 医学 肿瘤科 癌症 中心(范畴论) 医学物理学 内科学 化学 结晶学
作者
Shuitang Deng,Danjiang Huang,Xiaoyu Han,He Zhang,Hui Wang,Guoqun Mao,Weiqun Ao
出处
期刊:BMC Cancer [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12885-025-14759-9
摘要

To explore the efficacy of a deep learning (DL) model in predicting perineural invasion (PNI) in prostate cancer (PCa) by conducting multiparametric MRI (mpMRI)-based tumor heterogeneity analysis. This retrospective study included 397 patients with PCa from two medical centers. The patients were divided into training, internal validation (in-vad), and independent external validation (ex-vad) cohorts (n = 173, 74, and 150, respectively). mpMRI-based habitat analysis, comprising T2-weighted imaging, diffusion-weighted imaging, and apparent diffusion coefficient sequences, was performed followed by DL, deep feature selection, and filtration to compute a radscore. Subsequently, six models were constructed: one clinical model, four habitat models (habitats 1, 2, 3, and whole-tumor), and one combined model. Receiver operating characteristic curve analysis was performed to evaluate the models' ability to predict PNI. The four habitat models exhibited robust performance in predicting PNI, with area under the curve (AUC) values of 0.862-0.935, 0.802-0.957, and 0.859-0.939 in the training, in-vad, and ex-vad cohorts, respectively. The clinical model had AUC values of 0.832, 0.818, and 0.789 in the training, in-vad, and ex-vad cohorts, respectively. The combined model outperformed the clinical and habitat models, with AUC, sensitivity, and specificity values of 0.999, 1, and 0.955 for the training cohort. Decision curve analysis and clinical impact curve analysis indicated favorable clinical applicability and utility of the combined model. DL models constructed through mpMRI-based habitat analysis accurately predict the PNI status of PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研民工李完成签到,获得积分10
2秒前
2秒前
CodeCraft应助zwx采纳,获得10
3秒前
hbz完成签到,获得积分10
3秒前
李健应助UU采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
水手长完成签到 ,获得积分10
6秒前
6秒前
6秒前
Skywalker完成签到,获得积分10
7秒前
旧雨新知完成签到 ,获得积分0
9秒前
浮游应助哈哈采纳,获得10
9秒前
anpucle发布了新的文献求助10
11秒前
Arimson发布了新的文献求助10
12秒前
13秒前
酷波er应助joy12138采纳,获得10
15秒前
浮游应助小宝爸爸采纳,获得10
16秒前
Dracoon发布了新的文献求助10
16秒前
ppzz完成签到 ,获得积分10
16秒前
17秒前
as_eichi完成签到,获得积分10
17秒前
19秒前
Yarny完成签到 ,获得积分10
19秒前
hahahah发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助150
20秒前
研友_ndDGVn完成签到,获得积分10
21秒前
23秒前
怕孤单的筮完成签到,获得积分10
26秒前
Huang_xiaoer发布了新的文献求助50
27秒前
shunlimaomi完成签到 ,获得积分10
28秒前
28秒前
Dracoon完成签到,获得积分10
29秒前
30秒前
30秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
31秒前
33秒前
xxxx完成签到,获得积分10
33秒前
欣喜的妙竹完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5047065
求助须知:如何正确求助?哪些是违规求助? 4276160
关于积分的说明 13328792
捐赠科研通 4090371
什么是DOI,文献DOI怎么找? 2238206
邀请新用户注册赠送积分活动 1245405
关于科研通互助平台的介绍 1173690