亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing machine learning interatomic potentials for hydroxide transport: Surprising efficiency of single-concentration training

培训(气象学) 计算机科学 化学 材料科学 物理 气象学
作者
Jonas Hänseroth,Christian Dreßler
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:163 (8) 被引量:1
标识
DOI:10.1063/5.0284063
摘要

We investigate the transferability of machine learning interatomic potentials across concentration variations in chemically similar systems, using aqueous potassium hydroxide solutions as a case study. Despite containing identical chemical species (K+, OH-, and H2O) across all concentrations, models fine-tuned on specific KOH concentrations exhibit surprisingly poor transferability to others, with force prediction errors increasing dramatically from 30 meV Å-1 (at training concentration) to 90 meV Å-1 (at very different concentrations). This reveals a critical limitation when applying such models beyond their training domain, even within chemically homogeneous systems. We demonstrate that strategic selection of training data can substantially overcome these limitations without requiring extensive computational resources. Models fine-tuned on intermediate concentrations (6.26 mol l-1) exhibit remarkable transferability across the entire concentration spectrum (0.56-17.89 mol l-1), often outperforming more computationally expensive models trained on multiple concentration datasets. This approach enables accurate simulation of hydroxide transport dynamics across varying electrolyte conditions while maintaining near-quantum accuracy. Our simulations further reveal the emergence of hydroxide-hydroxide hydrogen bonding at high concentrations-a phenomenon not explicitly represented in dilute training data but successfully captured by our intermediate-concentration model. This work establishes practical guidelines for developing broadly applicable machine learning force fields with optimal transferability, challenging the assumption that diverse training datasets are always necessary for robust performance in similar chemical environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
大个应助绿树成荫采纳,获得10
12秒前
坚定的小蘑菇完成签到 ,获得积分10
12秒前
18秒前
Timelapse发布了新的文献求助10
21秒前
41秒前
45秒前
53秒前
lllll完成签到,获得积分20
1分钟前
1分钟前
Timelapse发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Timelapse发布了新的文献求助10
1分钟前
1分钟前
黑摄会阿Fay完成签到,获得积分10
1分钟前
BowieHuang应助Timelapse采纳,获得10
1分钟前
甜橙完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
NattyPoe应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得20
1分钟前
1分钟前
852应助一碗鱼采纳,获得10
2分钟前
wanci应助andrele采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
一碗鱼发布了新的文献求助10
2分钟前
2分钟前
theo完成签到 ,获得积分10
2分钟前
糕冷草莓完成签到,获得积分10
2分钟前
英姑应助一碗鱼采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
一碗鱼发布了新的文献求助10
3分钟前
一碗鱼完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772792
求助须知:如何正确求助?哪些是违规求助? 5602544
关于积分的说明 15430087
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639585
邀请新用户注册赠送积分活动 1587478
关于科研通互助平台的介绍 1542423