材料科学
位阻效应
电介质
聚合物
俘获
比例(比率)
化学物理
纳米技术
化学工程
工程物理
光电子学
复合材料
有机化学
工程类
物理
生态学
化学
生物
量子力学
作者
Li Xue,Ling Weng,Xiaoming Wang,Ze Li,Yuhan Li,Xiaorui Zhang,Lizhu Guan,Zijian Wu
标识
DOI:10.1002/adfm.202512257
摘要
Abstract High‐temperature capacitive energy storage requires dielectric materials to maintain low conduction losses and high discharged energy density under extreme thermal conditions, a critical challenge that drives innovation in advanced dielectric polymers. Herein, amino‐functionalized polyhedral oligomeric silsesquioxane (NH 2 ‐POSS) moieties are covalently grafted onto polyamide‐ether‐imide (PAEI) backbone terminal groups. The NH 2 ‐POSS expands intermolecular spacing from 6.94 to 8.11 Å to sterically hinder interchain charge transport. Molecular engineering of the PAEI backbone through DABA and BPADA forms restricts intra‐chain charge conduction by ‐CH 3 ‐CH‐CH 3 ‐ groups. Concurrently, a local state energy level shift (0.14 eV) and carrier deep trap capture (1.21 eV) achieve multidimensional suppression of carrier migration. The modified film exhibits ultralow conductivity (3.29 × 10 −12 S cm −1 at 200 °C) and high energy storage densities of 7.43 J cm −3 (150 °C) and 6.54 J cm −3 (200 °C) with η > 90%. Multiscale simulations, including density functional theory (DFT) calculations of trap depth distributions, molecular dynamics (MD) analyses quantifying chain spacing and fractional free volume (FFV) increase, and finite element modeling of field‐dependent conduction pathways, collectively validate the suppression mechanisms. This molecular topology engineering paradigm, synergizing steric confinement and electronic structure tailoring, establishes a generalized framework for extreme‐condition dielectric design.
科研通智能强力驱动
Strongly Powered by AbleSci AI