An Electrocardiogram Foundation Model Built on over 10 Million Recordings

基础(证据) 工程类 地理 考古
作者
Jun Li,Aaron D. Aguirre,Valdery Moura,Jiarui Jin,Che Liu,Lanhai Zhong,Chenxi Sun,Gari D. Clifford,M. Brandon Westover,Shenda Hong
标识
DOI:10.1056/aioa2401033
摘要

Artificial intelligence (AI) has demonstrated significant potential in electrocardiogram (ECG) analysis and cardiovascular disease assessment. Recently, foundation models have played a remarkable role in advancing medical AI, bringing benefits such as efficient disease diagnosis and cross-domain knowledge transfer. The development of an ECG foundation model holds the promise of elevating AI-ECG research to new heights. However, building such a model poses several challenges, including insufficient database sample sizes and inadequate generalization across multiple domains. In addition, there is a notable performance gap between single-lead and multilead ECG analysis. We propose a general-purpose ECG foundation model (ECGFounder), which leverages real-world ECG annotations from cardiologists to broaden the diagnostic capabilities of ECG analysis. ECGFounder was built on 10,771,552 ECGs from 1,818,247 unique subjects with 150 label categories from the Harvard-Emory ECG Database, enabling comprehensive cardiovascular disease diagnosis. The model is designed to be both an effective out-of-the-box solution and easily fine-tunable for downstream tasks, maximizing usability. Importantly, we extended its application to reduced-lead ECGs, particularly single-lead ECGs. ECGFounder is therefore applicable to various downstream tasks in mobile and remote monitoring scenarios. Experimental results demonstrate that ECGFounder achieves expert-level performance on internal validation sets, with area under the receiver operating characteristic curve (AUROC) exceeding 0.95 for 80 diagnoses. It also shows strong classification performance and generalization across various diagnoses on external validation sets. When fine-tuned, ECGFounder outperforms baseline models in demographic analysis, clinical event detection, and cross-modality cardiac rhythm diagnosis, surpassing baseline methods by 3 to 5 points in the AUROC. The ECG foundation model offers an effective solution, allowing it to generalize across a wide range of tasks. By enhancing existing cardiovascular diagnostics and facilitating integration with cloud-based systems, which analyze ECG data uploaded from wearable devices, it significantly contributes to the advancement of the cardiovascular AI community and enables management of cardiac conditions. (Funded by the National Science Foundation and others.).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
静柏发布了新的文献求助10
1秒前
1秒前
彭于晏应助jaydin82采纳,获得10
1秒前
DODO完成签到,获得积分10
2秒前
英姑应助HJJHJH采纳,获得10
2秒前
2秒前
佳音完成签到,获得积分10
3秒前
3秒前
小牛马完成签到,获得积分10
3秒前
3秒前
cici完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
科研通AI6应助王佳慧采纳,获得10
5秒前
马玉琴完成签到,获得积分10
5秒前
姜呱呱呱发布了新的文献求助10
5秒前
5秒前
Csm完成签到,获得积分10
5秒前
qing发布了新的文献求助10
5秒前
5秒前
吴雨涛完成签到,获得积分10
6秒前
闪火发布了新的文献求助10
7秒前
jui发布了新的文献求助30
7秒前
自觉雁玉完成签到,获得积分20
8秒前
8秒前
ATTENTION完成签到,获得积分10
8秒前
8秒前
研友_8RyzBZ发布了新的文献求助10
9秒前
随心发布了新的文献求助10
9秒前
xiang完成签到 ,获得积分10
10秒前
xudou完成签到,获得积分10
11秒前
12秒前
13秒前
友好皮皮虾完成签到,获得积分10
16秒前
16秒前
希望天下0贩的0应助潮汐采纳,获得10
16秒前
萧萧萧完成签到,获得积分10
17秒前
木槿发布了新的文献求助10
17秒前
17秒前
闪火完成签到,获得积分10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132185
求助须知:如何正确求助?哪些是违规求助? 4333666
关于积分的说明 13501674
捐赠科研通 4170698
什么是DOI,文献DOI怎么找? 2286593
邀请新用户注册赠送积分活动 1287479
关于科研通互助平台的介绍 1228414