电解质
溶剂化
法拉第效率
离子
插层(化学)
石墨烯
离子键合
离子液体
溶剂
离子运输机
化学
离子电导率
氧化物
材料科学
化学工程
无机化学
纳米技术
有机化学
电极
物理化学
催化作用
工程类
作者
Jieun Kang,Inhui Lee,Guoliang Yu,Jin Jun Heo,Yuri Choi,Sangyeop Lee,Sung‐Ho Kim,Dong‐Joo Kim,Jungki Ryu,Seoin Back,Soojin Park,Jaegeon Ryu
标识
DOI:10.1002/advs.202505982
摘要
Abstract Electrolytes shape solvation structures that govern ionic transport, stability, and interfacial properties in energy storage systems. Sodium‐based dual‐ion shuttling systems offer high‐voltage and fast‐charging potential but face challenges such as solvent co‐intercalation, electrolyte decomposition, and low Coulombic efficiency, partly due to limited anion‐focused electrolyte design. Herein, a low‐concentration dual‐ionic weakly solvating electrolyte (DWSE) is introduced, leveraging functionalized nano‐graphene oxide additives to modulate the solvation environments of Na + and PF 6 − . While a conventional cationic weakly solvating electrolyte (CWSE) enhances Na + transport, DWSE simultaneously addresses anion and cation transport for a more balanced approach. DWSE prevents solvent co‐intercalation, stabilizes interfaces with NaF‐rich layers, and enhances ionic transport. It achieves a reversible capacity of 82.0 mAh g −1 at 50 C and retains 96.2% capacity after 1500 cycles at 10 C. This study offers a robust framework for advancing dual‐ion shuttling systems with optimized cation and anion dynamics.
科研通智能强力驱动
Strongly Powered by AbleSci AI