可靠性(半导体)
心理测量学
心理学
结构方程建模
应用心理学
社会心理学
计算机科学
临床心理学
机器学习
量子力学
物理
功率(物理)
作者
Andrew B. Speer,Frederick L. Oswald,Dan J. Putka
标识
DOI:10.1177/10944281251346404
摘要
Machine learning and artificial intelligence (AI) are increasingly used within organizational research and practice to generate scores representing constructs (e.g., social effectiveness) or behaviors/events (e.g., turnover probability). Ensuring the reliability of AI scores is critical in these contexts, and yet reliability estimates are reported in inconsistent ways, if at all. The current article critically examines reliability estimation for AI scores. We describe different uses of AI scores and how this informs the data and model needed for estimating reliability. Additionally, we distinguish between reliability and validity evidence within this context. We also highlight how the parallel test assumption is required when relying on correlations between AI scores and established measures as an index of reliability, and yet this assumption is frequently violated. We then provide methods that are appropriate for reliability estimation for AI scores that are sensitive to the generalizations one aims to make. In conclusion, we assert that AI reliability estimation is a challenging task that requires a thorough understanding of the issues presented, but a task that is essential to responsible AI work in organizational contexts.
科研通智能强力驱动
Strongly Powered by AbleSci AI