计算机科学
残余物
人工智能
公制(单位)
断层(地质)
领域知识
机器学习
任务(项目管理)
领域(数学分析)
特征(语言学)
收缩率
特征工程
代表(政治)
模式识别(心理学)
数据挖掘
监督学习
深度学习
人工神经网络
算法
数学
工程类
数学分析
语言学
运营管理
哲学
系统工程
地震学
政治
法学
政治学
地质学
作者
Junwei Hu,Weigang Li,Xiujuan Zheng,Zhiqiang Tian,Yong Zhang
标识
DOI:10.1088/1361-6501/ace46c
摘要
Abstract In engineering practice, device failure samples are limited in the case of unexpected catastrophic faults, thereby limiting the application of deep learning in fault diagnosis. In this study, we propose a prior knowledge-based residual shrinkage prototype network to resolve the fault diagnosis challenges under limited labeled samples. First, our method combines general supervised learning and metric meta-learning to extract prior knowledge from the labeled source data by utilizing a denoised residual shrinkage network. Further, the knowledge extracted from the supervised learning is used for prototype metric training to achieve a better feature representation for the fault diagnosis. Finally, our approach outperforms a series of baseline methods in the few-shot cross-domain diagnostic task on the gearbox and bearing datasets. A diagnosis accuracy of more than 95% has been achieved in a variety of working conditions for diagnostic tasks, which is far higher than the existing basic method.
科研通智能强力驱动
Strongly Powered by AbleSci AI