Thoracic Radiology: Recent Developments and Future Trends

医学 放射科 医学物理学 梅德林 普通外科 政治学 法学
作者
Theresa C. McLoud,Brent P. Little
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (2) 被引量:2
标识
DOI:10.1148/radiol.223121
摘要

HomeRadiologyVol. 306, No. 2 PreviousNext Reviews and CommentaryEditorial–Centennial ContentThoracic Radiology: Recent Developments and Future TrendsTheresa C. McLoud , Brent P. LittleTheresa C. McLoud , Brent P. LittleAuthor AffiliationsFrom the Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit St, MZ-FND 216, Boston, MA 02114-2696 (T.C.M.); and Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic Florida, Jacksonville, Fla (B.P.L.).Address correspondence to T.C.M. (email: [email protected]).Theresa C. McLoud Brent P. LittlePublished Online:Jan 17 2023https://doi.org/10.1148/radiol.223121MoreSectionsFull textPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In References1. Eltorai AEM, Bratt AK, Guo HH. Thoracic Radiologists’ Versus Computer Scientists’ Perspectives on the Future of Artificial Intelligence in Radiology. J Thorac Imaging 2020;35(4):255–259. Crossref, Medline, Google Scholar2. Milam ME, Koo CW. The current status and future of FDA-approved artificial intelligence tools in chest radiology in the United States. Clin Radiol 2022. https://doi.org/10.1016/j.crad.2022.08.135. Published online September 27, 2022. Medline, Google Scholar3. Hsu HH, Ko KH, Chou YC, et al. Performance and reading time of lung nodule identification on multidetector CT with or without an artificial intelligence-powered computer-aided detection system. Clin Radiol 2021;76(8):626.e23–626.e32. Crossref, Medline, Google Scholar4. Martini K, Blüthgen C, Eberhard M, et al. Impact of Vessel Suppressed-CT on Diagnostic Accuracy in Detection of Pulmonary Metastasis and Reading Time. Acad Radiol 2021;28(7):988–994. Crossref, Medline, Google Scholar5. Ahn JS, Ebrahimian S, McDermott S, et al. Association of Artificial Intelligence-Aided Chest Radiograph Interpretation With Reader Performance and Efficiency. JAMA Netw Open 2022;5(8):e2229289. Crossref, Medline, Google Scholar6. Zuo Z, Wang P, Zeng W, Qi W, Zhang W. Measuring pure ground-glass nodules on computed tomography: assessing agreement between a commercially available deep learning algorithm and radiologists’ readings. Acta Radiol 2022. https://doi.org/10.1177/02841851221135406. Published online October 31, 2022. Crossref, Medline, Google Scholar7. Li MD, Arun NT, Gidwani M, et al. Automated Assessment and Tracking of COVID-19 Pulmonary Disease Severity on Chest Radiographs using Convolutional Siamese Neural Networks. Radiol Artif Intell 2020;2(4):e200079. Link, Google Scholar8. Hsu TH, Schawkat K, Berkowitz SJ, et al. Artificial intelligence to assess body composition on routine abdominal CT scans and predict mortality in pancreatic cancer: A recipe for your local application. Eur J Radiol 2021;142:109834. Crossref, Medline, Google Scholar9. van Assen M, Martin SS, Varga-Szemes A, et al. Automatic coronary calcium scoring in chest CT using a deep neural network in direct comparison with non-contrast cardiac CT: A validation study. Eur J Radiol 2021;134:109428. Crossref, Medline, Google Scholar10. Fischer AM, Varga-Szemes A, van Assen M, et al. Comparison of Artificial Intelligence-Based Fully Automatic Chest CT Emphysema Quantification to Pulmonary Function Testing. AJR Am J Roentgenol 2020;214(5):1065–1071. Crossref, Medline, Google Scholar11. Pierce JD, Rosipko B, Youngblood L, Gilkeson RC, Gupta A, Bittencourt LK. Seamless Integration of Artificial Intelligence Into the Clinical Environment: Our Experience With a Novel Pneumothorax Detection Artificial Intelligence Algorithm. J Am Coll Radiol 2021;18(11):1497–1505. Crossref, Medline, Google Scholar12. Li MD, Chang K, Mei X, et al. Radiology Implementation Considerations for Artificial Intelligence (AI) Applied to COVID-19, From the AJR Special Series on AI Applications. AJR Am J Roentgenol 2022;219(1):15–23. Crossref, Medline, Google Scholar13. Mei X, Lee HC, Diao KY, et al. Artificial intelligence-enabled rapid diagnosis of patients with COVID-19. Nat Med 2020;26(8):1224–1228. Crossref, Medline, Google Scholar14. Schalekamp S, Klein WM, van Leeuwen KG. Current and emerging artificial intelligence applications in chest imaging: a pediatric perspective. Pediatr Radiol 2022;52(11):2120–2130. Crossref, Medline, Google Scholar15. Refaee T, Salahuddin Z, Frix AN, et al. Diagnosis of Idiopathic Pulmonary Fibrosis in High-Resolution Computed Tomography Scans Using a Combination of Handcrafted Radiomics and Deep Learning. Front Med (Lausanne) 2022;9:915243. Crossref, Medline, Google Scholar16. Jun S, Park B, Seo JB, Lee S, Kim N. Development of a Computer-Aided Differential Diagnosis System to Distinguish Between Usual Interstitial Pneumonia and Non-specific Interstitial Pneumonia Using Texture- and Shape-Based Hierarchical Classifiers on HRCT Images. J Digit Imaging 2018;31(2):235–244. Crossref, Medline, Google Scholar17. Pickhardt PJ. Value-added Opportunistic CT Screening: State of the Art. Radiology 2022;303(2):241–254. Link, Google Scholar18. Willemink MJ, Persson M, Pourmorteza A, Pelc NJ, Fleischmann D. Photon-counting CT: Technical Principles and Clinical Prospects. Radiology 2018;289(2):293–312. Link, Google Scholar19. Symons R, Pourmorteza A, Sandfort V, et al. Feasibility of Dose-reduced Chest CT with Photon-counting Detectors: Initial Results in Humans. Radiology 2017;285(3):980–989. Link, Google Scholar20. Wehrse E, Klein L, Rotkopf LT, et al. Photon-counting detectors in computed tomography: from quantum physics to clinical practice. Radiologe 2021;61(Suppl 1):1–10. Crossref, Medline, Google Scholar21. Inoue A, Johnson TF, White D, et al. Estimating the Clinical Impact of Photon-Counting-Detector CT in Diagnosing Usual Interstitial Pneumonia. Invest Radiol 2022;57(11):734–741. Crossref, Medline, Google Scholar22. Zhou W, Montoya J, Gutjahr R, et al. Lung nodule volume quantification and shape differentiation with an ultra-high resolution technique on a photon-counting detector computed tomography system. J Med Imaging (Bellingham) 2017;4(4):043502. Medline, Google Scholar23. Ohno Y, Seo JB, Parraga G, et al. Pulmonary Functional Imaging: Part 1-State-of-the-Art Technical and Physiologic Underpinnings. Radiology 2021;299(3):508–523. Link, Google Scholar24. Gefter WB, Lee KS, Schiebler ML, et al. Pulmonary Functional Imaging: Part 2-State-of-the-Art Clinical Applications and Opportunities for Improved Patient Care. Radiology 2021;299(3):524–538. Link, Google Scholar25. Ciet P, Boiselle PM, Heidinger B, et al. Cine MRI of Tracheal Dynamics in Healthy Volunteers and Patients With Tracheobronchomalacia. AJR Am J Roentgenol 2017;209(4):757–761. Crossref, Medline, Google Scholar26. Grist JT, Chen M, Collier GJ, et al. Hyperpolarized 129Xe MRI Abnormalities in Dyspneic Patients 3 Months after COVID-19 Pneumonia: Preliminary Results. Radiology 2021;301(1):E353–E360. Link, Google Scholar27. Grist JT, Collier GJ, Walters H, et al. Lung Abnormalities Detected with Hyperpolarized 129Xe MRI in Patients with Long COVID. Radiology 2022;305(3):709–717. Link, Google Scholar28. Gassert FT, Urban T, Frank M, et al. X-ray Dark-Field Chest Imaging: Qualitative and Quantitative Results in Healthy Humans. Radiology 2021;301(2):389–395. Link, Google Scholar29. Frank M, Gassert FT, Urban T, et al. Dark-field chest X-ray imaging for the assessment of COVID-19-pneumonia. Commun Med (Lond) 2022;2(1):147. Crossref, Medline, Google Scholar30. National Lung Screening Trial Research Team; Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011;365(5):395–409. Crossref, Medline, Google Scholar31. Lam S, Tammemagi M. Contemporary issues in the implementation of lung cancer screening. Eur Respir Rev 2021;30(161):200288. Crossref, Medline, Google Scholar32. Kastner J, Hossain R, Jeudy J, et al. Lung-RADS Version 1.0 versus Lung-RADS Version 1.1: Comparison of Categories Using Nodules from the National Lung Screening Trial. Radiology 2021;300(1):199–206. Link, Google Scholar33. Sears CR, Mazzone PJ. Biomarkers in Lung Cancer. Clin Chest Med 2020;41(1):115–127. Crossref, Medline, Google Scholar34. Ohno Y, Koyama H, Matsumoto K, et al. Differentiation of malignant and benign pulmonary nodules with quantitative first-pass 320-detector row perfusion CT versus FDG PET/CT. Radiology 2011;258(2):599–609. Link, Google Scholar35. de Almeida RPP, da Silva CA, Vicente BI da C, Abrantes AFCL, Azevedo KB. The Paradigm Shift in Medical Imaging Education and Training in Europe. Int J Inf Educ Technol 2022;12(4):326–332. Google Scholar36. Ge L, Chen Y, Yan C, Chen Z, Liu J. Effectiveness of flipped classroom vs traditional lectures in radiology education: A meta-analysis. Medicine (Baltimore) 2020;99(40):e22430. Crossref, Medline, Google Scholar37. Nishino M, Schiebler ML. Advances in Thoracic Imaging: Key Developments in the Past Decade and Future Directions. Radiology 2023. https://doi.org/10.1148/radiol.222536. Published online January 10, 2023. Link, Google ScholarArticle HistoryReceived: Dec 4 2022Revision requested: Dec 5 2022Revision received: Dec 12 2022Accepted: Dec 12 2022Published online: Jan 17 2023 FiguresReferencesRelatedDetailsAccompanying This ArticleThoracic Radiology: Recent Developments and Future TrendsMar 14 2023Default Digital Object SeriesRecommended Articles Low-Dose CT Screening for Lung Cancer: Evidence from 2 Decades of StudyRadiology: Imaging Cancer2020Volume: 2Issue: 2Incidental Lymphadenopathy at CT Lung Cancer ScreeningRadiology2021Volume: 302Issue: 3pp. 693-694Added Value of Deep Learning–based Detection System for Multiple Major Findings on Chest Radiographs: A Randomized Crossover StudyRadiology2021Volume: 299Issue: 2pp. 450-459Advances in Thoracic Imaging: Key Developments in the Past Decade and Future DirectionsRadiology2023Volume: 306Issue: 2Computer-aided Quantification of Pulmonary Fibrosis in Patients with Lung Cancer: Relationship to Disease-free SurvivalRadiology2019Volume: 292Issue: 2pp. 489-498See More RSNA Education Exhibits Introduction to Artificial Intelligence and Big Data Research in Chest RadiologyDigital Posters2019Role Of Radiology In Addressing The Challenge Of Lung Cancer After Lung Transplantation.Digital Posters2021Interstitial Lung Disease in Rheumatoid ArthritisDigital Posters2022 RSNA Case Collection Granulomatous lymphocytic interstitial lung disease RSNA Case Collection2021Lipoid PneumoniaRSNA Case Collection2021Round pneumonia RSNA Case Collection2021 Vol. 306, No. 2 PodcastMetrics Altmetric Score PDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致乐双完成签到,获得积分10
1秒前
卡卡西应助mmyhn采纳,获得20
2秒前
3秒前
tywznba完成签到,获得积分10
3秒前
口口发布了新的文献求助10
3秒前
苹果千秋完成签到 ,获得积分10
3秒前
晨曦完成签到 ,获得积分10
4秒前
思源应助机智的思山采纳,获得10
6秒前
fish完成签到,获得积分20
7秒前
8秒前
枯叶蝶完成签到,获得积分10
9秒前
YY发布了新的文献求助10
9秒前
mmmmTNBL完成签到,获得积分10
10秒前
wygasa发布了新的文献求助20
10秒前
852应助Inter09采纳,获得30
10秒前
14秒前
姜露萍完成签到,获得积分10
15秒前
隐形曼青应助畅小畅采纳,获得10
15秒前
wwww发布了新的文献求助10
15秒前
Whale完成签到,获得积分10
16秒前
17秒前
19秒前
21秒前
21秒前
21秒前
李健的小迷弟应助404采纳,获得10
21秒前
牛奶开水完成签到 ,获得积分10
22秒前
奋斗的觅山完成签到,获得积分10
22秒前
SYLH应助陈鹏采纳,获得10
22秒前
多情赛君发布了新的文献求助10
23秒前
明亮的映天完成签到,获得积分10
24秒前
25秒前
25秒前
26秒前
L先生发布了新的文献求助10
26秒前
niiiiii完成签到,获得积分10
27秒前
27秒前
27秒前
xiaoyao完成签到,获得积分10
27秒前
Inter09发布了新的文献求助30
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809074
求助须知:如何正确求助?哪些是违规求助? 3353748
关于积分的说明 10366884
捐赠科研通 3069992
什么是DOI,文献DOI怎么找? 1685889
邀请新用户注册赠送积分活动 810759
科研通“疑难数据库(出版商)”最低求助积分说明 766335