亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CAPLA: improved prediction of protein–ligand binding affinity by a deep learning approach based on a cross-attention mechanism

可解释性 计算机科学 配体(生物化学) 互补性(分子生物学) 深度学习 人工智能 机制(生物学) 机器学习 计算生物学 药物发现 化学 生物信息学 生物 生物化学 遗传学 受体 哲学 认识论
作者
Zhi Jin,Tingfang Wu,Taoning Chen,Deng Pan,Xuejiao Wang,Jingxin Xie,Lijun Quan,Qiang Lyu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (2) 被引量:30
标识
DOI:10.1093/bioinformatics/btad049
摘要

Abstract Motivation Accurate and rapid prediction of protein–ligand binding affinity is a great challenge currently encountered in drug discovery. Recent advances have manifested a promising alternative in applying deep learning-based computational approaches for accurately quantifying binding affinity. The structure complementarity between protein-binding pocket and ligand has a great effect on the binding strength between a protein and a ligand, but most of existing deep learning approaches usually extracted the features of pocket and ligand by these two detached modules. Results In this work, a new deep learning approach based on the cross-attention mechanism named CAPLA was developed for improved prediction of protein–ligand binding affinity by learning features from sequence-level information of both protein and ligand. Specifically, CAPLA employs the cross-attention mechanism to capture the mutual effect of protein-binding pocket and ligand. We evaluated the performance of our proposed CAPLA on comprehensive benchmarking experiments on binding affinity prediction, demonstrating the superior performance of CAPLA over state-of-the-art baseline approaches. Moreover, we provided the interpretability for CAPLA to uncover critical functional residues that contribute most to the binding affinity through the analysis of the attention scores generated by the cross-attention mechanism. Consequently, these results indicate that CAPLA is an effective approach for binding affinity prediction and may contribute to useful help for further consequent applications. Availability and implementation The source code of the method along with trained models is freely available at https://github.com/lennylv/CAPLA. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
bkagyin应助ma采纳,获得10
1分钟前
1分钟前
ma发布了新的文献求助10
1分钟前
1分钟前
可可完成签到 ,获得积分10
1分钟前
天雨流芳发布了新的文献求助10
1分钟前
天天快乐应助天雨流芳采纳,获得30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
yanice完成签到,获得积分10
2分钟前
可爱的函函应助ineffable采纳,获得10
2分钟前
zrm完成签到,获得积分10
3分钟前
3分钟前
天天摸鱼完成签到,获得积分10
3分钟前
可久斯基完成签到 ,获得积分10
4分钟前
过氧化氢完成签到,获得积分20
4分钟前
华仔应助过氧化氢采纳,获得10
4分钟前
5分钟前
和风完成签到 ,获得积分10
5分钟前
ktw完成签到,获得积分10
5分钟前
5分钟前
过氧化氢发布了新的文献求助10
5分钟前
6分钟前
6分钟前
domingo完成签到,获得积分10
7分钟前
Lexi完成签到 ,获得积分10
7分钟前
8分钟前
小马甲应助科研通管家采纳,获得10
8分钟前
11111完成签到,获得积分20
8分钟前
8分钟前
11111发布了新的文献求助10
8分钟前
8分钟前
桐桐应助于慧中采纳,获得10
8分钟前
JrPaleo101完成签到,获得积分10
8分钟前
8分钟前
于慧中发布了新的文献求助10
8分钟前
XiYang完成签到,获得积分10
9分钟前
冉亦完成签到,获得积分10
9分钟前
顾矜应助我要发nature采纳,获得10
10分钟前
斯文败类应助ma采纳,获得10
10分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840784
求助须知:如何正确求助?哪些是违规求助? 3382680
关于积分的说明 10526321
捐赠科研通 3102551
什么是DOI,文献DOI怎么找? 1708888
邀请新用户注册赠送积分活动 822765
科研通“疑难数据库(出版商)”最低求助积分说明 773584