Fitness and Distance Based Local Search With Adaptive Differential Evolution for Multimodal Optimization Problems

局部最优 局部搜索(优化) 计算机科学 健身景观 数学优化 引导式本地搜索 补语(音乐) 竞赛(生物学) 人工智能 数学 基因 表型 生物 生物化学 社会学 人口学 生态学 化学 互补 人口
作者
Zijia Wang,Zhi‐Hui Zhan,Yun Li,Sam Kwong,Sang-Woon Jeon,Jun Zhang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:7 (3): 684-699 被引量:24
标识
DOI:10.1109/tetci.2023.3234575
摘要

Local search has been regarded as a promising technique in multimodal algorithms to refine the accuracy of found multiple optima. However, how to execute the local search operations precisely on the found global optima and avoid the meaningless local search operations on local optima or found similar areas is still a challenge. In this paper, we propose a novel local search technique based on the individual information from two aspects, termed as fitness and distance based local search (FDLS). The fitness information can avoid the ineffective local search operations on the local optima, while the distance information can avoid the meaningless local search operations on the similar areas. These two kinds of information act in different roles and complement each other, which ensures that the local search is executed in different (ensured by distance information) and promising (ensured by fitness information) areas, leading to successful local search. Based on this, we design an adaptive DE (ADE) with adaptive parameters scheme and apply FDLS to ADE, termed as FDLS-ADE. Experimental results on the CEC2015 multimodal competition show the effectiveness and superiority of the FDLS-ADE, including comparisons with the winner of the CEC2015 multimodal competition. Furthermore, compared with other multimodal algorithms, the performance of the FDLS-ADE is seen relatively insensitive to niching parameters. Besides, experiments conducted also show that the FDLS can be applied to other multimodal algorithms easily and can further improve their performance. Finally, an application to a real-world nonlinear equations system further illustrates the applicability of the FDLS-ADE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助墨尘采纳,获得10
刚刚
认真柠檬完成签到,获得积分10
1秒前
yori发布了新的文献求助10
2秒前
旅人发布了新的文献求助10
2秒前
的服务费完成签到,获得积分10
5秒前
澈千子完成签到,获得积分10
6秒前
crazy完成签到 ,获得积分10
6秒前
完美世界应助vfi采纳,获得10
9秒前
坚定的向珊完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
风趣安青完成签到 ,获得积分10
15秒前
超级访云完成签到,获得积分10
17秒前
leaves发布了新的文献求助10
17秒前
17秒前
火柴two完成签到,获得积分10
19秒前
20秒前
李爱国应助Groot采纳,获得10
20秒前
搜集达人应助dzh采纳,获得10
21秒前
garlic完成签到,获得积分10
23秒前
叮当发布了新的文献求助30
23秒前
23秒前
gao456789发布了新的文献求助10
24秒前
外向沅发布了新的文献求助10
25秒前
25秒前
25秒前
老板别打烊完成签到,获得积分10
26秒前
路脚下完成签到 ,获得积分10
26秒前
wlffjessica应助霓霓采纳,获得20
27秒前
刘春林发布了新的文献求助10
27秒前
677发布了新的文献求助10
27秒前
30秒前
Hello应助寻123采纳,获得10
30秒前
30秒前
vfi发布了新的文献求助10
30秒前
星辰大海应助睡着那么快采纳,获得10
30秒前
学术老6完成签到,获得积分10
32秒前
33秒前
33秒前
古道作家完成签到 ,获得积分10
33秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4231596
求助须知:如何正确求助?哪些是违规求助? 3764977
关于积分的说明 11830407
捐赠科研通 3423970
什么是DOI,文献DOI怎么找? 1878982
邀请新用户注册赠送积分活动 931915
科研通“疑难数据库(出版商)”最低求助积分说明 839431