序列(生物学)
外倾角(空气动力学)
机制(生物学)
序列学习
计算机科学
人工智能
结构工程
工程类
生物
物理
遗传学
量子力学
作者
Zishuo Dong,Xu Li,Feng Luan,Jianzhao Cao,Jingguo Ding,Dianhua Zhang
标识
DOI:10.1016/j.aej.2024.05.097
摘要
Camber in hot-rolled plates significantly impacts product quality and rolling process stability, making accurate camber prediction crucial. However, it is challenging to measure asymmetric factors impacting camber in real production, hindering the ability of current models to predict and analyze the overall camber of rolled plates. This study proposes a method that combines asymmetric fluctuations of measurable variables with deep learning to predict camber. We developed a data analysis platform for plate processing and constructed a camber dataset using machine vision technology. During the modeling phase, a hot-rolled plate camber prediction model, BiLSTM-AM-Seq2Seq, was proposed, integrating a bidirectional long short-term memory network, an attention mechanism, and a sequence-to-sequence model. Additionally, an improved scheduled sampling method was also introduced to steer model training. Model performance was evaluated with real-world production data, demonstrating superior accuracy and stability. Specifically, the model achieved a mean absolute error of 12.29 mm and a root mean square error of 17.32 mm. Consequently, this model meets the demands of practical production and addresses the need for overall camber prediction of hot rolled plates.
科研通智能强力驱动
Strongly Powered by AbleSci AI