Automatic curriculum determination for deep reinforcement learning in reconfigurable robots.

强化学习 计算机科学 机器人 课程 人工智能 机器学习 人机交互 心理学 教育学
作者
Zachi Karni,Or Simhon,David Zarrouk,Sigal Berman
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 78342-78353 被引量:1
标识
DOI:10.1109/access.2024.3406768
摘要

Deep reinforcement learning (DRL) is a prevalent learning method in robotics. DRL is commonly applied in real-world scenarios such as learning motion behavior in rough terrain. However, the lengthy learning epochs reduce DRL practicability in many such environments. Curriculum learning can significantly enhance the efficiency of DRL, but establishing a curriculum is challenging, partly because it can be difficult to assess the operation complexity for each task. Determining operation complexity can be especially difficult for reconfigurable search and rescue robots. We present a method for learning based on an automatically established curriculum tuned to the robot's perspective. The method is especially suitable for outdoor environments with multiple obstacle variants, e.g., environments encountered in search and rescue missions. After an initial learning stage, the behavior of a robot when overcoming each obstacle variant is characterized using Gaussian mixture models (GMMs). Hellinger's distance between the GMMs is computed and used for hierarchically clustering the variants. The curriculum is determined based on the formed clusters and the average success rate in each cluster. The method was implemented on RSTAR, a highly maneuverable and reconfigurable field robot that can overcome a variety of obstacles. Learning using the automatically determined curriculum was compared to learning without a curriculum in a simulation with three obstacle types: a narrow channel, a low entrance, and a step. The results show that learning using the automatically determined curriculum enables overcoming obstacles faster and with higher success rates than learning without a curriculum for all obstacles, especially for complex obstacle variants. The developed method offers a promising method for learning motion behavior in real-word scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
123发布了新的文献求助10
3秒前
科研通AI5应助哆啦A梦采纳,获得10
6秒前
从心从心完成签到,获得积分10
6秒前
想长头发的灯灯完成签到,获得积分10
7秒前
刘松发布了新的文献求助10
8秒前
8秒前
tRee10完成签到,获得积分10
9秒前
MM完成签到,获得积分10
9秒前
10秒前
SciGPT应助科研小卡拉米采纳,获得20
11秒前
11秒前
lorentzh发布了新的文献求助10
11秒前
不渝完成签到,获得积分10
12秒前
T123456789完成签到,获得积分10
12秒前
田様应助想长头发的灯灯采纳,获得10
13秒前
不安的采白完成签到,获得积分10
14秒前
15秒前
15秒前
蒋灵馨完成签到 ,获得积分10
15秒前
16秒前
刘松完成签到,获得积分20
16秒前
小蘑菇应助超超采纳,获得10
17秒前
钢铁加鲁鲁完成签到,获得积分0
18秒前
科研通AI2S应助DONG采纳,获得30
18秒前
19秒前
充电宝应助刘松采纳,获得10
20秒前
科研通AI2S应助不渝采纳,获得10
21秒前
22秒前
liherong完成签到,获得积分10
22秒前
yjf完成签到,获得积分10
23秒前
孤独雁桃发布了新的文献求助10
25秒前
自觉画笔完成签到 ,获得积分10
26秒前
27秒前
27秒前
青藤发布了新的文献求助10
27秒前
飞飞发布了新的文献求助10
29秒前
薄荷心完成签到 ,获得积分10
31秒前
FLOW发布了新的文献求助30
31秒前
张庭豪完成签到,获得积分10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796450
求助须知:如何正确求助?哪些是违规求助? 3341711
关于积分的说明 10307271
捐赠科研通 3058290
什么是DOI,文献DOI怎么找? 1678094
邀请新用户注册赠送积分活动 805873
科研通“疑难数据库(出版商)”最低求助积分说明 762838