已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integrating Network Pharmacology, Quantitative Metabolic Network Analysis, In Vitro Experiments, and Molecular Dynamics to Explore the Mechanism of Angelica Sinensis for Regulating Bone Metabolism

骨重建 破骨细胞 运行x2 兰克尔 机制(生物学) 新陈代谢 代谢途径 细胞代谢 细胞生物学 化学 代谢网络 药理学 生物 生物化学 体外 成骨细胞 内分泌学 受体 哲学 认识论 激活剂(遗传学)
作者
Anlei Yuan,Chaoqun Liu,Wenqing Feng,Beiyan Li,Lulu Zheng,Jiaye Tian,Bin Yu,Yanling Zhang
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
卷期号:27
标识
DOI:10.2174/0113862073313394240430072032
摘要

Background: Bone metabolic diseases are serious health issues worldwide. Angelica sinensis (AS) is traditionally used in Chinese medicine for treating bone metabolism diseases clinically. However, the mechanism of AS in regulating bone metabolism remains uncertain. Objective: The current investigation was structured to elucidate the potential mechanisms of AS for modulating bone metabolism Methods: Firstly, targets of AS regulating bone metabolism were collected by network pharmacology. Then, the transcriptional regulation of RUNX2 was enriched as one of the key pathways for AS to regulate bone metabolism, constructing its metabolic network. Secondly, combining molecular docking, network efficiency, and network flux analyses, we conducted a quantitative evaluation of the metabolic network to reveal the potential mechanisms and components of AS regulating bone metabolism. Finally, we explored the effect of AS on the differentiation of osteoclasts from M-CSF and RANKL-induced RAW264.7 cells, as well as its impact on the osteogenic induction of MC3T3-E1 cells. We verified the mechanism and key targets of AS on bone metabolism using qRT-PCR. Furthermore, the key component was preliminarily validated through molecular dynamics simulation. Results: Quantitative metabolic network of the transcriptional regulation of RUNX2 was constructed to illustrate the potential mechanism of AS for regulating bone metabolism, indicating that ferulic acid may be a pharmacological component of AS that interferes with bone metabolism. AS suppressed osteoclast differentiation in M-CSF and RANKL-induced RAW264.7 cells and reversed the expressions of osteoclastic differentiation markers, including RUNX2 and SRC. Additionally, AS induced osteogenic generation in MC3T3-E1 cells and reversed the expressions of markers associated with osteoblastic generation, such as RUNX2 and HDAC4. Molecular dynamics simulation displayed a strong binding affinity among ferulic acid, HDAC4 and SRC. Conclusion: This study reveals a systematic perspective on the intervention bone mechanism of AS by transcriptive regulation by RUNX2, guiding the clinical use of AS in treating diseases of the skeletal system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
知足的憨人丫丫完成签到,获得积分10
10秒前
大力的咖啡豆完成签到,获得积分20
22秒前
dique3hao完成签到 ,获得积分10
22秒前
旋转木马9个完成签到 ,获得积分10
26秒前
30秒前
领导范儿应助dan1029采纳,获得10
31秒前
希望天下0贩的0应助dan1029采纳,获得10
31秒前
FashionBoy应助dan1029采纳,获得10
31秒前
英俊的铭应助dan1029采纳,获得10
31秒前
古铜完成签到 ,获得积分10
32秒前
Carrots完成签到 ,获得积分10
33秒前
我爱Chem完成签到 ,获得积分10
34秒前
35秒前
Kyrie完成签到 ,获得积分10
36秒前
wgm完成签到,获得积分10
37秒前
共享精神应助么么么采纳,获得10
38秒前
科研论文的狗完成签到,获得积分10
40秒前
Jonathan完成签到,获得积分10
41秒前
常绝山完成签到 ,获得积分10
41秒前
42秒前
木木三发布了新的文献求助10
45秒前
obaica完成签到,获得积分10
48秒前
123完成签到 ,获得积分10
49秒前
49秒前
fantianhui完成签到 ,获得积分10
51秒前
51秒前
隐形的谷槐完成签到 ,获得积分10
53秒前
共享精神应助木木三采纳,获得10
55秒前
本本完成签到 ,获得积分10
56秒前
优美若雁发布了新的文献求助10
57秒前
竹筏过海应助科研通管家采纳,获得30
58秒前
汉堡包应助科研通管家采纳,获得10
58秒前
58秒前
1分钟前
YiWei完成签到 ,获得积分10
1分钟前
SciGPT应助一行白鹭采纳,获得50
1分钟前
1分钟前
hyw完成签到 ,获得积分10
1分钟前
QQ发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777535
求助须知:如何正确求助?哪些是违规求助? 3322919
关于积分的说明 10212363
捐赠科研通 3038238
什么是DOI,文献DOI怎么找? 1667247
邀请新用户注册赠送积分活动 798068
科研通“疑难数据库(出版商)”最低求助积分说明 758201