四方晶系
互易晶格
材料科学
相变
凝聚态物理
结晶学
相界
晶体结构
铁电性
立方晶系
格子(音乐)
相(物质)
衍射
电介质
化学
光学
物理
有机化学
光电子学
声学
作者
Ido Biran,Alexeï Bosak,Zuo‐Guang Ye,Igor Levin,Semën Gorfman
摘要
(1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) perovskite-like solid solutions are recognized for their outstanding electromechanical properties, which are of technological importance. However, some significant aspects of the crystal structures and domain assemblages in this system and the role of these characteristics in defining the functional performance of PMN-PT remain uncertain. Here, we used synchrotron x-ray diffraction to investigate the phase transition linking the paraelectric (cubic) and ferroelectric (tetragonal) phases in a single crystal of 0.65PMN-0.35PT. We analyzed the evolution of reciprocal-space maps across this transition. These maps were collected using small temperature step (1 K) and a high reciprocal-space resolution to reveal changes in the splitting of Bragg peaks caused by the formation of ferroelastic domains in the low-symmetry phase. Our results uncovered a two-phase state, cubic plus tetragonal phases, which exists over a narrow temperature range of only ≈4 K and exhibits a thermal hysteresis of ≈1.8 K. Remarkably, within this state, the lattice parameter of the cubic phase, aC, matches the orientational average of the lattice parameters for the tetragonal polymorph, 23aT+13cT. We discuss the implications of this matching, highlighting the possibility of it being realized by the formation of an assemblage of tetragonal twin domains separated from the cubic phase by a strain-free {110} boundary, as in the “adaptive phase” but without domain miniaturization.
科研通智能强力驱动
Strongly Powered by AbleSci AI