Identifying the Nonlinear Dynamics of Logistic Mapping Using the Modified 0–1 Test for Chaos

混沌(操作系统) 非线性系统 动力学(音乐) 考试(生物学) 逻辑图 计算机科学 统计物理学 人工智能 物理 混乱的 地质学 声学 计算机安全 古生物学 量子力学
作者
X. Zhang,Kai Yang,Wei Min Xu,Qingtai Xiao,Hua Wang,Jianxin Pan
出处
期刊:International Journal of Bifurcation and Chaos [World Scientific]
标识
DOI:10.1142/s0218127424500950
摘要

Chaos identification can not only promote the development and perfection of chaos theory, but also help to find the factors that produce chaos in the considered system, and control or anti-control it. The 0–1 test for chaos is an effective method to detect chaos. In order to simulate the noise contaminated through its production, Gaussian, Exponential, and Uniform noises are added to Logistic mapping to form a new hybrid time series, respectively. The effects of noise types and levels on the modified 0–1 test for chaos are studied. By studying the effect of different types of noises on chaos index [Formula: see text], [Formula: see text], and the change of [Formula: see text] with amplitude [Formula: see text], it can be seen that Uniform noise has the greatest effect on chaos identification. In addition, it is found that the effect of the noise types on chaos identification depends on the peak of the noisy time series, and the effect of the noise on chaos detection increases with the increase of the noisy time series peak. It is worth noting that the selection of amplitude [Formula: see text] can improve the noise resistance of chaos identification. The noise resistance of the modified 0–1 test for chaos can be improved by adjusting the amplitude [Formula: see text] of the parameters. With the continuous increase of noise contamination level, the effect on the modified 0–1 test for chaos detection results is gradually enhanced, so reducing the noise contamination level is the key to improving the accuracy of the modified 0–1 test for chaos. In addition, adjusting the amplitude [Formula: see text] can also play a certain noise immunity effect, and when [Formula: see text], the noise immunity is stronger on logistic mapping. Sample size [Formula: see text] up to [Formula: see text] is sufficient, but amplitude [Formula: see text] has little effect on chaos identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
赫葛发布了新的文献求助10
2秒前
LYZSh完成签到,获得积分10
2秒前
wefs发布了新的文献求助10
3秒前
hugeng完成签到,获得积分20
5秒前
hugeng发布了新的文献求助10
8秒前
萧萧完成签到,获得积分10
9秒前
隐形曼青应助wefs采纳,获得10
9秒前
11秒前
12秒前
12秒前
15秒前
yana发布了新的文献求助30
15秒前
羊晓瑶发布了新的文献求助10
15秒前
16秒前
活泼的诗桃完成签到,获得积分10
16秒前
17秒前
小慧完成签到,获得积分10
18秒前
静好发布了新的文献求助10
19秒前
宇宙最萌小猫咪完成签到 ,获得积分10
20秒前
搜集达人应助彩色靖儿采纳,获得10
21秒前
呃呃呃c完成签到 ,获得积分10
22秒前
许甜甜鸭完成签到,获得积分0
22秒前
现代雁桃完成签到,获得积分10
26秒前
SYLH应助金属玻璃兰兰采纳,获得10
26秒前
22222发布了新的文献求助10
27秒前
zzz完成签到,获得积分10
29秒前
fengbeing完成签到,获得积分10
33秒前
33秒前
CipherSage应助俭朴青烟采纳,获得10
35秒前
CCCCCL完成签到,获得积分10
38秒前
victorzou发布了新的文献求助20
38秒前
mr_beard完成签到 ,获得积分10
39秒前
金属玻璃兰兰完成签到,获得积分10
39秒前
tutu发布了新的文献求助10
40秒前
Gxt完成签到,获得积分10
41秒前
43秒前
44秒前
45秒前
tuanhust完成签到,获得积分10
46秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834985
求助须知:如何正确求助?哪些是违规求助? 3377482
关于积分的说明 10498789
捐赠科研通 3096967
什么是DOI,文献DOI怎么找? 1705382
邀请新用户注册赠送积分活动 820539
科研通“疑难数据库(出版商)”最低求助积分说明 772123