Digital Twin-Assisted Fault Diagnosis of Rotating Machinery Without Measured Fault Data

断层(地质) 计算机科学 故障指示器 故障检测与隔离 地质学 地震学 人工智能 执行机构
作者
Jingyan Xia,Ruyi Huang,Jipu Li,Zhuyun Chen,Weihua Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-10 被引量:36
标识
DOI:10.1109/tim.2024.3417592
摘要

Timely and accurate data-driven fault diagnosis approaches are essential for ensuring the reliable operation and efficient maintenance of rotating machinery. However, practical applications face challenges in obtaining sufficient fault samples in advance, making it difficult to construct effective fault identification models. The digital twin (DT) methodology offers a potential solution to overcome this obstacle by providing a training dataset through simulation techniques. Currently, one of the most critical challenges is how to effectively leverage virtual fault diagnostic knowledge to boost the development of DT-assisted fault diagnosis methods. Thus, this article develops a DT-assisted intelligent fault diagnosis approach for rotating machinery without any measured fault data. First, the virtual model of a monitored device is developed, capable of generating virtual vibration signals with multiple health states under varying working conditions. Second, valuable information from the virtual fault data is effectively and automatically mined using the variational mode decomposition (VMD) technique and kurtosis calculation. Finally, an intelligent fault diagnosis model is constructed using the extracted virtual fault information. A case study involving a classical gearbox is conducted to verify the feasibility of the proposed DT-assisted approach. The diagnostic results indicate that this method can detect occurring faults and identify the fault types reliably, demonstrating that a new application paradigm can be applied for fault diagnosis in real-world scenarios even without any measured fault data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岁月静好完成签到,获得积分10
刚刚
12123浪发布了新的文献求助10
1秒前
1秒前
Balala完成签到,获得积分10
2秒前
依霏发布了新的文献求助10
2秒前
YANBINGHANG完成签到,获得积分10
2秒前
2秒前
可爱的函函应助bling采纳,获得10
3秒前
乐乐应助A2QD采纳,获得30
3秒前
科研通AI6应助斯人如机采纳,获得10
4秒前
5秒前
8秒前
8秒前
orixero应助lytelope采纳,获得10
9秒前
9秒前
Ava应助李先生采纳,获得10
10秒前
10秒前
sisi完成签到,获得积分20
11秒前
12秒前
小兰发布了新的文献求助10
12秒前
吴彦祖发布了新的文献求助10
13秒前
13秒前
在水一方应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
lalala应助科研通管家采纳,获得10
14秒前
white应助科研通管家采纳,获得10
14秒前
dxftx发布了新的文献求助10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
XRQ应助科研通管家采纳,获得50
14秒前
浮游应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
小杭76应助科研通管家采纳,获得10
14秒前
15秒前
浮游应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
之贻发布了新的文献求助10
15秒前
乐乐应助科研通管家采纳,获得20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300240
求助须知:如何正确求助?哪些是违规求助? 4448171
关于积分的说明 13845185
捐赠科研通 4333829
什么是DOI,文献DOI怎么找? 2379156
邀请新用户注册赠送积分活动 1374314
关于科研通互助平台的介绍 1339962