Exploring physical aging in PIM-1 using molecular dynamics

分子动力学 动力学(音乐) 化学 材料科学 化学物理 物理 计算化学 声学
作者
Marcel Balçık,Wojciech Ogieglo,Yingge Wang,Ingo Pinnau
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:706: 122918-122918 被引量:8
标识
DOI:10.1016/j.memsci.2024.122918
摘要

This comprehensive study explored the aging process of PIM-1, a ladder polymer of intrinsic microporosity (PIMs), by applying molecular dynamics simulations for the first time. Through detailed analysis, our work illustrates the evolution of the polymer structure from a loosely packed, less dense state of the pristine polymer to a more tightly packed configuration due to physical aging. For this purpose, a novel Molecular Dynamics (MD) methodology was employed in the process toward equilibration of PIM-1. This structural transition was quantitatively captured by measuring key parameters such as density, fractional free volume (FFV), cohesive energy density (CED), d-spacing, surface area, and gas permeabilities. The simulations demonstrate a noticeable increase in density by approximately 7% in aged PIM-1 compared to a fresh sample. This increase in density is accompanied by a corresponding decrease in FFV, suggesting a more compact molecular arrangement. The impact of these structural changes is evident in the gas transport properties. Permeabilities of all gases tested, He, H2, O2, N2, CO2 and CH4, decreased by 33% to 80%. Moreover, the selectivity of gas pairs like CO2/CH4 and O2/N2 exhibited increasing trends due to aging, as previously reported in experimental work. Structural analysis performed on the fresh and aged structures indicated collapse of free volume over aging, by disappearance of pores larger than ∼6.5 Å. Furthermore, no intrachain rearrangement was observed during physical aging in the ladder PIM-1 structure; rather, the aging resulted in increased interchain packing efficiency. Our methodology can be employed to other PIM architectures, such as polyimides of intrinsic microporosity (PIM-PIs) as well as low-free volume glassy polymers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
tingalan完成签到,获得积分0
2秒前
Yenom完成签到 ,获得积分10
3秒前
Twonej应助Dengera采纳,获得30
9秒前
抹不掉的记忆完成签到,获得积分10
10秒前
吴丹发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
泥嚎完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
大力完成签到 ,获得积分10
14秒前
香蕉新儿完成签到,获得积分10
16秒前
顾建瑜发布了新的文献求助10
18秒前
Criminology34应助TRACEY采纳,获得10
22秒前
小二郎应助TRACEY采纳,获得10
22秒前
量子星尘发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
34秒前
36秒前
丘比特应助吴丹采纳,获得10
40秒前
小丸子和zz完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
41秒前
wonwojo完成签到 ,获得积分10
44秒前
初昀杭完成签到 ,获得积分10
45秒前
周全完成签到 ,获得积分10
46秒前
量子星尘发布了新的文献求助10
50秒前
所所应助Damon采纳,获得10
51秒前
Jasper应助风雨无阻采纳,获得10
54秒前
量子星尘发布了新的文献求助10
55秒前
蓝意完成签到,获得积分0
57秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
风雨无阻发布了新的文献求助10
1分钟前
Damon发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
liaomr完成签到 ,获得积分10
1分钟前
陈俊雷完成签到 ,获得积分0
1分钟前
77完成签到,获得积分10
1分钟前
yong完成签到 ,获得积分10
1分钟前
CY完成签到,获得积分10
1分钟前
qinghe完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664669
求助须知:如何正确求助?哪些是违规求助? 4867964
关于积分的说明 15108331
捐赠科研通 4823340
什么是DOI,文献DOI怎么找? 2582243
邀请新用户注册赠送积分活动 1536300
关于科研通互助平台的介绍 1494695