清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and validation of a machine learning‐based model to predict isolated post‐challenge hyperglycemia in middle‐aged and elder adults: Analysis from a multicentric study

餐后 糖尿病 医学 机器学习 人工智能 人工神经网络 血糖 内科学 人口 中国人口 计算机科学 内分泌学 生物化学 化学 环境卫生 基因型 基因
作者
Rui Hou,Jingtao Dou,Lijuan Wu,Xiaoyu Zhang,Changwei Li,Wei‐Qing Wang,Zhengnan Gao,Xulei Tang,Yan Li,Qin Wan,Zuojie Luo,Guijun Qin,Lulu Chen,Jianguang Ji,Yan He,W. Wang,Yiming Mu,Deqiang Zheng
出处
期刊:Diabetes-metabolism Research and Reviews [Wiley]
卷期号:40 (5)
标识
DOI:10.1002/dmrr.3832
摘要

Abstract Introduction Due to the high cost and complexity, the oral glucose tolerance test is not adopted as the screening method for identifying diabetes patients, which leads to the misdiagnosis of patients with isolated post‐challenge hyperglycemia (IPH), that is., patients with normal fasting plasma glucose (<7.0 mmoL/L) and abnormal 2‐h postprandial blood glucose (≥11.1 mmoL/L). We aimed to develop a model to differentiate individuals with IPH from the normal population. Methods Data from 54301 eligible participants were obtained from the Risk Evaluation of Cancers in Chinese Diabetic Individuals: a longitudinal (REACTION) study in China. Data from 37740 participants were used to develop the diagnostic system. External validation was performed among 16561 participants. Three machine learning algorithms were used to create the predictive models, which were further evaluated by various classification algorithms to establish the best predictive model. Results Ten features were selected to develop an IPH diagnosis system (IPHDS) based on an artificial neural network. In external validation, the AUC of the IPHDS was 0.823 (95% CI 0.811–0.836), which was significantly higher than the AUC of the Taiwan model [0.799 (0.786–0.813)] and that of the Chinese Diabetes Risk Score model [0.648 (0.635–0.662)]. The IPHDS model had a sensitivity of 75.6% and a specificity of 74.6%. This model outperformed the Taiwan and CDRS models in subgroup analyses. An online site with instant predictions was deployed at https://app‐iphds‐e1fc405c8a69.herokuapp.com/ . Conclusions The proposed IPHDS could be a convenient and user‐friendly screening tool for diabetes during health examinations in a large general population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qq完成签到 ,获得积分10
9秒前
10秒前
运敬完成签到 ,获得积分10
14秒前
16秒前
20秒前
杏林小郑完成签到 ,获得积分10
24秒前
Andy完成签到 ,获得积分10
24秒前
为什么不学习完成签到,获得积分10
26秒前
康康完成签到 ,获得积分10
26秒前
缥缈的闭月完成签到,获得积分10
33秒前
lod完成签到,获得积分10
33秒前
热心的飞风完成签到 ,获得积分10
37秒前
bigpluto完成签到,获得积分10
37秒前
Bethune124完成签到 ,获得积分10
38秒前
Aimee完成签到 ,获得积分10
42秒前
现代完成签到,获得积分10
50秒前
MUAN完成签到 ,获得积分10
51秒前
韩寒完成签到 ,获得积分10
57秒前
airtermis完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
刚刚完成签到 ,获得积分10
1分钟前
科奇完成签到,获得积分10
1分钟前
1分钟前
二牛完成签到,获得积分10
1分钟前
科目三应助doreen采纳,获得30
1分钟前
朴素亦绿完成签到,获得积分10
1分钟前
完犊子完成签到,获得积分20
1分钟前
搜集达人应助幻梦如歌采纳,获得10
1分钟前
淡定蓝完成签到,获得积分20
1分钟前
车灵波完成签到 ,获得积分10
1分钟前
EED完成签到 ,获得积分10
1分钟前
大方的荟完成签到,获得积分10
1分钟前
1分钟前
波波完成签到 ,获得积分10
1分钟前
淡定蓝发布了新的文献求助10
1分钟前
1分钟前
幻梦如歌发布了新的文献求助10
2分钟前
韭菜盒子完成签到,获得积分20
2分钟前
2分钟前
幻梦如歌完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Global Immunoassay Market: Trends, Technologies, and Growth Opportunities, 2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4280609
求助须知:如何正确求助?哪些是违规求助? 3808560
关于积分的说明 11929451
捐赠科研通 3455807
什么是DOI,文献DOI怎么找? 1895217
邀请新用户注册赠送积分活动 944496
科研通“疑难数据库(出版商)”最低求助积分说明 848291