A new method for mapping vegetation structure parameters in forested areas using GEDI data

植被(病理学) 环境科学 比例(比率) 叶面积指数 植被分类 遥感 增强植被指数 自然地理学 水文学(农业) 生态学 地理 归一化差异植被指数 植被指数 地图学 地质学 生物 岩土工程 医学 病理
作者
Ziwei Wang,Hongyan Cai,Xiaohuan Yang
出处
期刊:Ecological Indicators [Elsevier]
卷期号:164: 112157-112157 被引量:9
标识
DOI:10.1016/j.ecolind.2024.112157
摘要

The spatially continuous mapping of vegetation structure parameters in forested areas serves as a crucial foundation for research in various fields, including ecosystem ecology, climate change, hydrology, and forest management and protection. However, there is a notable scarcity of regional scale data regarding vegetation structure parameters. Therefore, our objective was to fill this data gap by providing a methodology for mapping vegetation structure parameters in forested areas at regional-scale. Global Ecosystem Dynamics Investigation (GEDI) provides precise observational data on vegetation structure parameters across the world. Using GEDI vegetation structure parameter point data, we developed a vegetation state coefficient based on the ratio of plant area index (PAI) and vegetation coverage (COVER). Subsequently, we proposed a method for decomposing vegetation coverage to simulate layered vegetation coverage. Taking Jiangxi Province as a case study, we integrated machine learning models to generate a spatially continuous map of vegetation structure parameters in forested areas, including layered coverage and layered leaf area index, in 2020. The map has a spatial resolution of 30 m and a vertical resolution of 5 m. The model exhibits excellent performance. Among the 140 sets of models, approximately 63 % of them achieved an R2 surpassing 0.6, while 89 % of the models achieved a root mean square error (RMSE) below 0.3. This study can serve as a valuable reference for the decomposition of vegetation structure parameters at the regional scale and provide a more precise depiction of the spatial characteristics of vertical vegetation structure at the regional scale. It contributes by providing data support and methodological guidance for research related to forest structure analysis, resource management, and ecological process simulation at the regional scale.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
hehe发布了新的文献求助10
1秒前
徐磊发布了新的文献求助10
1秒前
一点发布了新的文献求助10
1秒前
1秒前
顾鹏飞发布了新的文献求助10
2秒前
苏州河发布了新的文献求助10
2秒前
2秒前
2秒前
yyy完成签到,获得积分10
2秒前
十三应助复杂的寒荷采纳,获得10
3秒前
DamenS发布了新的文献求助10
4秒前
无极微光应助111采纳,获得30
5秒前
5秒前
5秒前
5秒前
cranberry发布了新的文献求助10
6秒前
ZYFei发布了新的文献求助10
6秒前
Ava应助weddcf采纳,获得10
6秒前
7秒前
在水一方应助XYN1采纳,获得10
7秒前
fae发布了新的文献求助10
7秒前
富冈义勇完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
科研小牛完成签到 ,获得积分10
8秒前
斯文败类应助回答采纳,获得10
9秒前
10秒前
NexusExplorer应助曾经的颜演采纳,获得10
10秒前
ding应助nxdsk采纳,获得10
11秒前
11秒前
Ykn完成签到,获得积分10
11秒前
lmy9988完成签到 ,获得积分10
11秒前
茫茫完成签到,获得积分20
11秒前
等待发布了新的文献求助10
11秒前
11秒前
沦落而完成签到,获得积分10
12秒前
Bmo完成签到,获得积分20
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621197
求助须知:如何正确求助?哪些是违规求助? 4705939
关于积分的说明 14934259
捐赠科研通 4764936
什么是DOI,文献DOI怎么找? 2551495
邀请新用户注册赠送积分活动 1514048
关于科研通互助平台的介绍 1474746