无线电技术
肺癌
阶段(地层学)
实体瘤
结果(博弈论)
医学
肿瘤科
内科学
癌症
放射科
数学
生物
古生物学
数理经济学
作者
Hao‐Ji Yan,Takahiro Niimi,Takeshi Matsunaga,Mariko Fukui,Aritoshi Hattori,Kazuya Takamochi,Kenji Suzuki
标识
DOI:10.1016/j.jtcvs.2024.05.010
摘要
Clinical stage IA non-small cell lung cancer (NSCLC) showing a pure-solid appearance on computed tomography is associated with a worse prognosis. This study aimed to develop and validate machine-learning models using preoperative clinical and radiomic features to predict overall survival (OS) in clinical stage IA pure-solid NSCLC.
科研通智能强力驱动
Strongly Powered by AbleSci AI