LARNeXt: End-to-End Lie Algebra Residual Network for Face Recognition

人工智能 计算机科学 模式识别(心理学) 卷积神经网络 子网 残余物 面部识别系统 特征提取 计算机视觉 算法 计算机网络
作者
Yang Xiao-long,Xiaohong Jia,Dihong Gong,Dong‐Ming Yan,Zhifeng Li,Wei Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (10): 11961-11976 被引量:9
标识
DOI:10.1109/tpami.2023.3279378
摘要

Face recognition has always been courted in computer vision and is especially amenable to situations with significant variations between frontal and profile faces. Traditional techniques make great strides either by synthesizing frontal faces from sizable datasets or by empirical pose invariant learning. In this paper, we propose a completely integrated embedded end-to-end Lie algebra residual architecture (LARNeXt) to achieve pose robust face recognition. First, we explore how the face rotation in the 3D space affects the deep feature generation process of convolutional neural networks (CNNs), and prove that face rotation in the image space is equivalent to an additive residual component in the feature space of CNNs, which is determined solely by the rotation. Second, on the basis of this theoretical finding, we further design three critical subnets to leverage a soft regression subnet with novel multi-fusion attention feature aggregation for efficient pose estimation, a residual subnet for decoding rotation information from input face images, and a gating subnet to learn rotation magnitude for controlling the strength of the residual component that contributes to the feature learning process. Finally, we conduct a large number of ablation experiments, and our quantitative and visualization results both corroborate the credibility of our theory and corresponding network designs. Our comprehensive experimental evaluations on frontal-profile face datasets, general unconstrained face recognition datasets, and industrial-grade tasks demonstrate that our method consistently outperforms the state-of-the-art ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Keyon完成签到,获得积分10
1秒前
科研通AI6应助公西翠萱采纳,获得10
1秒前
张鸿飞完成签到,获得积分10
1秒前
鸽子发布了新的文献求助10
1秒前
2秒前
浮游应助聪明胡萝卜采纳,获得10
3秒前
lilili应助聪明胡萝卜采纳,获得10
3秒前
4秒前
4秒前
XQQDD完成签到,获得积分10
4秒前
华仔应助wenlongliu采纳,获得10
5秒前
斯文墨镜发布了新的文献求助10
5秒前
wanci应助胡清美采纳,获得10
5秒前
可靠冥幽发布了新的文献求助30
5秒前
謃河鷺起完成签到,获得积分10
5秒前
6秒前
Grace发布了新的文献求助10
7秒前
XSY完成签到,获得积分10
7秒前
8秒前
8秒前
liminghui完成签到,获得积分20
8秒前
cedricleonard发布了新的文献求助150
10秒前
领导范儿应助theThreeMagi采纳,获得10
10秒前
11秒前
麻薯头头发布了新的文献求助10
11秒前
汝桢发布了新的文献求助10
11秒前
冰糖糖橘发布了新的文献求助20
11秒前
12秒前
zhoujuan_cip发布了新的文献求助10
13秒前
14秒前
Owen应助留胡子的不弱采纳,获得10
14秒前
超级的盼山完成签到,获得积分10
14秒前
酷波er应助梦梦采纳,获得10
15秒前
白白白完成签到,获得积分10
15秒前
15秒前
鲤鱼听荷完成签到 ,获得积分10
15秒前
frigst完成签到,获得积分20
16秒前
16秒前
邱鑫淼完成签到,获得积分10
16秒前
orixero应助ywzqdhy采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5332898
求助须知:如何正确求助?哪些是违规求助? 4471465
关于积分的说明 13917086
捐赠科研通 4365101
什么是DOI,文献DOI怎么找? 2398131
邀请新用户注册赠送积分活动 1391352
关于科研通互助平台的介绍 1362160