Multimodal artificial intelligence for retinal detachment diagnosis using fundus imaging and patient questionnaires

作者
Naoyuki Yonemaru,Hitoshi Tabuchi,Hodaka Deguchi,Yorikatsu Omi,Mao Tanabe,Naofumi Ishitobi,Hisataka Maruyama,Yuji Ayatsuka
出处
期刊:British Journal of Ophthalmology [BMJ]
卷期号:: bjo-2025
标识
DOI:10.1136/bjo-2025-327506
摘要

Background/aims This study aimed to develop a multimodal artificial intelligence (AI) system that integrates fundus imaging and patient questionnaire data to achieve clinician-level diagnostic accuracy for diagnosing retinal detachment (RD). Methods Ultra-widefield fundus images and comprehensive patient questionnaires were collected from patients with RD and healthy controls at Tsukazaki Hospital. A multimodal model was developed using the Contrastive Language–Image Pretraining framework to classify RD cases, alongside separate image-only and questionnaire-only models for comparison. Per-image and per-subject analyses were conducted to assess model performance. Results The multimodal model outperformed single-modal models in per-image and per-subject assessments. It achieved accuracy, recall and F1 scores of 0.899±0.054, 0.902±0.043 and 0.902±0.048 in the per-image analysis and 0.893±0.071, 0.949±0.044 and 0.873±0.074 in the per-subject analysis, respectively. The AI model’s overall diagnostic accuracy was slightly lower than that of human clinicians; however, it exhibited a higher recall rate, indicating improved detection of true RD cases. Conclusion Integrating fundus imaging with patient questionnaire data significantly improves AI-based RD diagnosis. Future research needs to focus on expanding the dataset and refining the questionnaire design to further improve model performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
直菱发布了新的文献求助10
2秒前
左鸣发布了新的文献求助10
2秒前
2秒前
虚心的芝麻完成签到,获得积分10
2秒前
3秒前
qiuwuji完成签到,获得积分10
3秒前
风清扬发布了新的文献求助10
4秒前
Akim应助Toqtor采纳,获得10
5秒前
5秒前
小猫不吃鱼完成签到 ,获得积分10
6秒前
huxy应助yuanqyq采纳,获得10
6秒前
lori发布了新的文献求助10
6秒前
7秒前
Paranoid完成签到 ,获得积分10
7秒前
7秒前
www完成签到,获得积分10
8秒前
8秒前
曼曼完成签到,获得积分10
8秒前
8秒前
小白发布了新的文献求助10
8秒前
10秒前
cmu1h发布了新的文献求助10
10秒前
10秒前
10秒前
超帅的碱完成签到,获得积分10
10秒前
了无给了无的求助进行了留言
11秒前
Winner发布了新的文献求助10
11秒前
11秒前
xxf关闭了xxf文献求助
13秒前
13秒前
zz完成签到,获得积分10
13秒前
13秒前
fang发布了新的文献求助10
13秒前
14秒前
春天的粥完成签到 ,获得积分10
14秒前
iiing发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712615
求助须知:如何正确求助?哪些是违规求助? 5211024
关于积分的说明 15268098
捐赠科研通 4864474
什么是DOI,文献DOI怎么找? 2611456
邀请新用户注册赠送积分活动 1561706
关于科研通互助平台的介绍 1519008