A corn canopy organs detection method based on improved DBi-YOLOv8 network

天蓬 农学 植物冠层 环境科学 生物 植物
作者
Haiou Guan,Haotian Deng,Xiaodan Ma,Tao Zhang,Yifei Zhang,Tianyu Zhu,Haichao Zhou,Zhicheng Gu,Yuxin Lu
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:154: 127076-127076 被引量:17
标识
DOI:10.1016/j.eja.2023.127076
摘要

Corn canopy organs detection is critical in obtaining high-throughput phenotypic data. Accurate identification of each organ can provide a reliable data source for canopy phenotype determination, which has significant theoretical and practical value for corn variety breeding, cultivation management, and high-quality and high-yielding production. Due to the difficulty in quickly identifying corn canopy organs in the natural environment of the field, it is challenging to obtain high-throughput phenotypic data. Therefore, this paper proposed a method for corn canopy organs detection based on an improved network model (DBi-YOLOv8). Firstly, the Raspberry Pi 4B was used as the sensor control center to construct an embedded system for corn canopy image acquisition and collected 987 images of corn plants. Secondly, the improved deformable convolution and Bi-level routing attention were embedded into the backbone and neck structures of the YOLOv8 network. With training the improved network, a corn canopy detection model was obtained, which enabled the rapid detection of corn canopy organs. Finally, the LTNS algorithm and TBC algorithm were proposed for counting of the number of leaves, ears, and tassels. On the testing set data, the detection performance of the model was analyzed through different evaluation metrics. The results showed that the mAP and FPS of the detection model were 89.4% and 65.3, which increased by 12% and 0.6 compared to the original model. In addition, both algorithms have high reliability, with the coefficient of determination R2 for counting crown leaves, ears, and tassel branches being 0.9336, 0.8149, and 0.917, respectively. This achievement proposed an accurate, non-destructive, and fast corn canopy organs detection model, providing reliable technical support for quantifying various traits of corn plants, field crop growth monitoring, and elite variety breeding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助Wangyingjie5采纳,获得10
1秒前
HY发布了新的文献求助10
1秒前
2秒前
世间安得双全法完成签到,获得积分0
2秒前
栗子完成签到 ,获得积分10
2秒前
lixiangrui110完成签到,获得积分10
2秒前
陈M雯完成签到 ,获得积分10
3秒前
harden9159完成签到,获得积分10
3秒前
NexusExplorer应助科研小白采纳,获得10
4秒前
余味应助4归0采纳,获得10
4秒前
哇咔咔完成签到 ,获得积分10
5秒前
默笙完成签到 ,获得积分10
5秒前
小智0921完成签到,获得积分10
6秒前
而当下的完成签到,获得积分10
6秒前
嘟嘟豆806完成签到 ,获得积分10
6秒前
四夕完成签到 ,获得积分10
7秒前
7秒前
7秒前
cometx完成签到 ,获得积分10
7秒前
MM完成签到,获得积分10
8秒前
卓霞完成签到,获得积分10
9秒前
李爱国应助Doner采纳,获得10
9秒前
自转无风完成签到,获得积分10
10秒前
Yam呀完成签到 ,获得积分10
12秒前
FF完成签到 ,获得积分10
12秒前
lwl完成签到,获得积分10
12秒前
俭朴的世界完成签到 ,获得积分10
13秒前
cuc发布了新的文献求助30
15秒前
非常完成签到,获得积分10
16秒前
YY完成签到,获得积分10
17秒前
淡淡菠萝完成签到 ,获得积分10
17秒前
czx完成签到,获得积分10
17秒前
wansida完成签到,获得积分10
19秒前
cuc完成签到,获得积分10
21秒前
範範完成签到,获得积分10
22秒前
晁子枫完成签到 ,获得积分10
22秒前
小皮皮完成签到,获得积分10
22秒前
gogogog完成签到 ,获得积分10
22秒前
LIKUN完成签到,获得积分10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795639
求助须知:如何正确求助?哪些是违规求助? 3340708
关于积分的说明 10301290
捐赠科研通 3057251
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805478
科研通“疑难数据库(出版商)”最低求助积分说明 762626