亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A corn canopy organs detection method based on improved DBi-YOLOv8 network

天蓬 农学 植物冠层 环境科学 生物 植物
作者
Haiou Guan,Haotian Deng,Xiaodan Ma,Tao Zhang,Yifei Zhang,Tianyu Zhu,Haichao Zhou,Zhicheng Gu,Yuxin Lu
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:154: 127076-127076 被引量:23
标识
DOI:10.1016/j.eja.2023.127076
摘要

Corn canopy organs detection is critical in obtaining high-throughput phenotypic data. Accurate identification of each organ can provide a reliable data source for canopy phenotype determination, which has significant theoretical and practical value for corn variety breeding, cultivation management, and high-quality and high-yielding production. Due to the difficulty in quickly identifying corn canopy organs in the natural environment of the field, it is challenging to obtain high-throughput phenotypic data. Therefore, this paper proposed a method for corn canopy organs detection based on an improved network model (DBi-YOLOv8). Firstly, the Raspberry Pi 4B was used as the sensor control center to construct an embedded system for corn canopy image acquisition and collected 987 images of corn plants. Secondly, the improved deformable convolution and Bi-level routing attention were embedded into the backbone and neck structures of the YOLOv8 network. With training the improved network, a corn canopy detection model was obtained, which enabled the rapid detection of corn canopy organs. Finally, the LTNS algorithm and TBC algorithm were proposed for counting of the number of leaves, ears, and tassels. On the testing set data, the detection performance of the model was analyzed through different evaluation metrics. The results showed that the mAP and FPS of the detection model were 89.4% and 65.3, which increased by 12% and 0.6 compared to the original model. In addition, both algorithms have high reliability, with the coefficient of determination R2 for counting crown leaves, ears, and tassel branches being 0.9336, 0.8149, and 0.917, respectively. This achievement proposed an accurate, non-destructive, and fast corn canopy organs detection model, providing reliable technical support for quantifying various traits of corn plants, field crop growth monitoring, and elite variety breeding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
单薄的蓝天完成签到,获得积分10
4秒前
Lucas应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
Tiamo发布了新的文献求助10
7秒前
SCI完成签到 ,获得积分10
41秒前
乐乐应助科研圈外人采纳,获得10
1分钟前
开心的瘦子完成签到,获得积分10
1分钟前
CipherSage应助cc采纳,获得10
1分钟前
1分钟前
1分钟前
cc完成签到,获得积分10
1分钟前
1分钟前
芒果布丁完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
享受不良诱惑完成签到,获得积分10
2分钟前
丫丫完成签到 ,获得积分10
2分钟前
2分钟前
Tiamo完成签到,获得积分10
2分钟前
yzsh完成签到,获得积分20
2分钟前
2分钟前
2分钟前
3分钟前
FFFF发布了新的文献求助20
3分钟前
3分钟前
Anna完成签到 ,获得积分10
3分钟前
FFFF完成签到,获得积分10
4分钟前
Tiamo发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
有趣的银发布了新的文献求助10
4分钟前
落叶捎来讯息完成签到 ,获得积分10
4分钟前
4分钟前
搜集达人应助阿塔塔采纳,获得10
4分钟前
小田发布了新的文献求助10
4分钟前
阿塔塔完成签到,获得积分10
4分钟前
有趣的银发布了新的文献求助10
4分钟前
4分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232636
求助须知:如何正确求助?哪些是违规求助? 4401913
关于积分的说明 13699440
捐赠科研通 4268297
什么是DOI,文献DOI怎么找? 2342513
邀请新用户注册赠送积分活动 1339514
关于科研通互助平台的介绍 1296180