Coordinated control of path tracking and yaw stability for distributed drive electric vehicle based on AMPC and DYC

理论(学习稳定性) 控制理论(社会学) 跟踪(教育) 控制(管理) 路径(计算) 电动汽车 计算机科学 物理 人工智能 功率(物理) 心理学 教育学 量子力学 机器学习 程序设计语言
作者
Dongmei Wu,Yuying Guan,Xin Xia,Changqing Du,Fuwu Yan,Yang Li,Min Hua,Wei Liu
出处
标识
DOI:10.1177/09544070231221595
摘要

Maintaining both path-tracking accuracy and yaw stability of distributed drive electric vehicles (DDEVs) under various driving conditions presents a significant challenge in the field of vehicle control. To address this limitation, a coordinated control strategy that integrates adaptive model predictive control (AMPC) path-tracking control and direct yaw moment control (DYC) is proposed for DDEVs. The proposed strategy, inspired by a hierarchical framework, is coordinated by the upper layer of path-tracking control and the lower layer of direct yaw moment control. Based on the linear time-varying model predictive control (LTV MPC) algorithm, the effects of prediction horizon and weight coefficients on the path-tracking accuracy and yaw stability of the vehicle are compared and analyzed first. According to the aforementioned analysis, an AMPC path-tracking controller with variable prediction horizon and weight coefficients is designed considering the change of vehicle speed in the upper layer. The lower layer involves DYC based on the linear quadratic regulator (LQR) technique. Specifically, the intervention rule of DYC is determined by the threshold of the yaw rate error and the phase diagram of the sideslip angle. Extensive simulation experiments are conducted to evaluate the proposed coordinated control strategy under different driving conditions. The results show that, under variable speed and low adhesion conditions, the vehicle yaw stability and path-tracking accuracy have been improved by 21.58% and 14.43%, respectively, compared to AMPC. Similarly, under high speed and low adhesion conditions, the vehicle yaw stability and path-tracking accuracy have been improved by 44.30% and 14.25%, respectively, compared to the coordination of LTV MPC and DYC. The results indicate that the proposed adaptive path-tracking controller is effective across different speeds. Furthermore, the proposed coordinated control strategy successfully enhances the vehicle stability while maintaining good path-tracking accuracy even under extreme conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
乐乐应助dongzhiliang采纳,获得10
1秒前
2秒前
欢喜灭龙发布了新的文献求助30
4秒前
ayee发布了新的文献求助10
4秒前
5秒前
calm完成签到,获得积分10
5秒前
5秒前
缪伟发布了新的文献求助10
5秒前
十月发布了新的文献求助10
6秒前
8秒前
科研之路完成签到,获得积分10
9秒前
Alexander发布了新的文献求助10
10秒前
落后曲奇发布了新的文献求助10
10秒前
YVONNE完成签到,获得积分10
11秒前
111发布了新的文献求助10
15秒前
十月完成签到,获得积分10
15秒前
酷波er应助小新采纳,获得10
17秒前
俭朴新之完成签到 ,获得积分10
20秒前
落后曲奇完成签到,获得积分10
23秒前
慕青应助简单冰岚采纳,获得10
25秒前
顾矜应助漂亮板栗采纳,获得10
29秒前
Akim应助超级的诗兰采纳,获得10
30秒前
李爱国应助现代的迎夏采纳,获得10
30秒前
32秒前
33秒前
37秒前
37秒前
大模型应助科研通管家采纳,获得10
37秒前
科研通AI6应助科研通管家采纳,获得10
37秒前
CipherSage应助Pinkney采纳,获得30
37秒前
华仔应助科研通管家采纳,获得10
37秒前
Meyako应助科研通管家采纳,获得10
37秒前
JamesPei应助科研通管家采纳,获得10
37秒前
大模型应助科研通管家采纳,获得10
37秒前
酷波er应助科研通管家采纳,获得10
37秒前
在水一方应助科研通管家采纳,获得10
37秒前
烟花应助科研通管家采纳,获得10
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4439405
求助须知:如何正确求助?哪些是违规求助? 3912032
关于积分的说明 12149686
捐赠科研通 3558978
什么是DOI,文献DOI怎么找? 1953579
邀请新用户注册赠送积分活动 993412
科研通“疑难数据库(出版商)”最低求助积分说明 888894