Improving Signal and Transit Peptide Predictions Using AlphaFold2-predicted Protein Structures

信号肽 信号(编程语言) 过境(卫星) 化学 肽序列 生物系统 生物 生物物理学 计算生物学 生物化学 计算机科学 工程类 运输工程 公共交通 基因 程序设计语言
作者
Venkata R. Sanaboyana,Adrian H. Elcock
出处
期刊:Journal of Molecular Biology [Elsevier BV]
卷期号:436 (2): 168393-168393 被引量:3
标识
DOI:10.1016/j.jmb.2023.168393
摘要

Many proteins contain cleavable signal or transit peptides that direct them to their final subcellular locations. Such peptides are usually predicted from sequence alone using methods such as TargetP 2.0 and SignalP 6.0. While these methods are usually very accurate, we show here that an analysis of a protein's AlphaFold2-predicted structure can often be used to identify false positive predictions. We start by showing that when given a protein’s full-length sequence, AlphaFold2 builds experimentally annotated signal and transit peptides in orientations that point away from the main body of the protein. This indicates that AlphaFold2 correctly identifies that a signal is not destined to be part of the mature protein’s structure and suggests, as a corollary, that predicted signals that AlphaFold2 folds with high confidence into the main body of the protein are likely to be false positives. To explore this idea, we analyzed predicted signal peptides in 48 proteomes made available in DeepMind’s AlphaFold2 database (https://alphafold.ebi.ac.uk). Applying TargetP 2.0 and SignalP 6.0 to the 561,562 proteins in the database results in 95,236 being predicted to contain a cleavable signal or transit peptide. In 95.1% of these cases, the AlphaFold2 structure of the full-length protein is fully consistent with the prediction of TargetP 2.0 or SignalP 6.0. In the remaining 4.9% of cases where the AlphaFold2 structure does not appear consistent with the prediction, the signal is often only predicted with low confidence. The potential false positives identified here may be useful for training even more accurate signal prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助Felly采纳,获得10
1秒前
Kuhail发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
gongq完成签到,获得积分10
3秒前
冰魂应助畅快的紫烟采纳,获得10
3秒前
5秒前
5秒前
涵泽发布了新的文献求助10
6秒前
笑笑发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
蛙蛙完成签到,获得积分10
7秒前
7秒前
8秒前
拼搏一曲完成签到 ,获得积分10
8秒前
无心风云完成签到,获得积分10
8秒前
9秒前
我是老大应助三和小神采纳,获得10
9秒前
Felly完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
辛勤的媚颜完成签到 ,获得积分10
11秒前
重要无招发布了新的文献求助10
11秒前
ewmmel发布了新的文献求助10
11秒前
11秒前
无心风云发布了新的文献求助10
12秒前
慕青应助gongq采纳,获得10
12秒前
12秒前
Felly发布了新的文献求助10
13秒前
hermione发布了新的文献求助10
13秒前
13秒前
ytq1265478发布了新的文献求助10
14秒前
Prozac完成签到,获得积分10
14秒前
14秒前
NexusExplorer应助哈理老萝卜采纳,获得10
15秒前
yuan发布了新的文献求助10
15秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799902
求助须知:如何正确求助?哪些是违规求助? 3345253
关于积分的说明 10324369
捐赠科研通 3061839
什么是DOI,文献DOI怎么找? 1680542
邀请新用户注册赠送积分活动 807138
科研通“疑难数据库(出版商)”最低求助积分说明 763491