Cytometry Masked Autoencoder: An Accurate and Interpretable Automated Immunophenotyper

自编码 计算机科学 质量细胞仪 聚类分析 细胞仪 人工智能 免疫分型 注释 分类器(UML) 机器学习 模式识别(心理学) 流式细胞术 深度学习 生物 免疫学 表型 生物化学 基因
作者
Jae‐Sik Kim,Matei Ionita,Matthew Lee,Michelle L. McKeague,Ajinkya Pattekar,Mark M. Painter,Joost Wagenaar,Van Truong,Dylan T. Norton,Divij Mathew,Yonghyun Nam,Sokratis A. Apostolidis,Cynthia Clendenin,Patryk Orzechowski,Sang‐Hyuk Jung,Jakob Woerner,C.A.G. Ittner,Alexandra P. Turner,Mika Esperanza,Thomas Dunn,Nilam S. Mangalmurti,John P. Reilly,Nuala J. Meyer,Carolyn S. Calfee,Kathleen D. Liu,Michael A. Matthy,Lamorna Brown Swigart,Ellen L. Burnham,Jeffrey McKeehan,Sheetal Gandotra,Derek W. Russel,Kevin W. Gibbs,Karl W. Thomas,Harsh Barot,Allison R. Greenplate,E. John Wherry,Dokyoon Kim
标识
DOI:10.1101/2024.02.13.580114
摘要

Abstract High-throughput single-cell cytometry data are crucial for understanding involvement of immune system in diseases and responses to treatment. Traditional methods for annotating cytometry data, specifically manual gating and clustering, face challenges in scalability, robustness, and accuracy. In this study, we propose a cytometry masked autoencoder (cyMAE), which offers an automated solution for immunophenotyping tasks including cell type annotation. The cyMAE model is designed to uphold user-defined cell type definitions, thereby facilitating easier interpretation and cross-study comparisons. The cyMAE model operates on a pre-train and fine-tune approach. In the pre-training phase, cyMAE employs Masked Cytometry Modelling (MCM) to learn relationships between protein markers in immune cells solely based on protein expression, without relying on prior information such as cell identity and cell type-specific marker proteins. Subsequently, the pre-trained cyMAE is fine-tuned on multiple specialized tasks via task-specific supervised learning. The pre-trained cyMAE addresses the shortcomings of manual gating and clustering methods by providing accurate and interpretable predictions. Through validation across multiple cohorts, we demonstrate that cyMAE effectively identifies co-occurrence patterns of bound labeled antibodies, delivers accurate and interpretable cellular immunophenotyping, and improves the prediction of subject metadata status. Specifically, we evaluated cyMAE for cell type annotation and imputation at the cellular-level and SARS-CoV-2 infection prediction, secondary immune response prediction against COVID-19, and prediction of the infection stage in COVID-19 progression at the subject-level. The introduction of cyMAE marks a significant step forward in immunology research, particularly in large-scale and high-throughput human immune profiling. This approach offers new possibilities for predicting and interpreting cellular-level and subject-level phenotypes in both health and disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
危机的阁发布了新的文献求助20
1秒前
yu驳回了SciGPT应助
2秒前
充电宝应助黄秋秋采纳,获得10
3秒前
skyline发布了新的文献求助10
3秒前
wanci应助科研废物采纳,获得10
4秒前
爱学习的小李完成签到 ,获得积分10
5秒前
深情安青应助一小部分我采纳,获得10
6秒前
招水若离完成签到,获得积分0
7秒前
快乐寄风完成签到 ,获得积分10
7秒前
何晏完成签到,获得积分10
8秒前
虚幻的香彤完成签到,获得积分10
9秒前
狂野夜绿完成签到,获得积分10
10秒前
11秒前
JamesPei应助兔美酱采纳,获得10
12秒前
12秒前
12秒前
13秒前
Augenstern完成签到 ,获得积分10
13秒前
11完成签到,获得积分10
14秒前
李慧敏完成签到,获得积分10
14秒前
LLSSLL完成签到,获得积分10
14秒前
wanci应助一小部分我采纳,获得10
15秒前
孤独依白发布了新的文献求助10
16秒前
科研废物发布了新的文献求助10
17秒前
andrele发布了新的文献求助10
17秒前
Owen应助wo采纳,获得10
18秒前
樟寿完成签到,获得积分10
18秒前
LLSSLL发布了新的文献求助10
19秒前
20秒前
希望天下0贩的0应助LL采纳,获得10
20秒前
21秒前
萨尔莫斯完成签到,获得积分10
22秒前
Darknewnew发布了新的文献求助10
23秒前
opq856完成签到 ,获得积分10
23秒前
zzzzzzz发布了新的文献求助20
24秒前
Hello应助hannah采纳,获得10
24秒前
25秒前
25秒前
暄暄发布了新的文献求助30
27秒前
gaw2008完成签到,获得积分10
27秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819177
求助须知:如何正确求助?哪些是违规求助? 3362253
关于积分的说明 10416174
捐赠科研通 3080484
什么是DOI,文献DOI怎么找? 1694511
邀请新用户注册赠送积分活动 814668
科研通“疑难数据库(出版商)”最低求助积分说明 768388