Forecasting greenhouse air and soil temperatures: A multi-step time series approach employing attention-based LSTM network

温室 空气温度 小气候 环境科学 温室气体 湿度 时间序列 气象学 航程(航空) 气候变化 多元统计 含水量 大气科学 数学 统计 工程类 地理 生态学 农学 岩土工程 考古 航空航天工程 地质学 生物
作者
Xinxing Li,Lu Zhang,Xiangyu Wang,Buwen Liang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:217: 108602-108602 被引量:13
标识
DOI:10.1016/j.compag.2023.108602
摘要

Greenhouses stand as key infrastructural components in contemporary agriculture, facilitating the perennial availability of vegetables. Harnessing accurate, real-time environmental data, particularly air and soil temperature, is pivotal to promoting the facility's efficiency in pest and disease alarming and vegetable production. Nevertheless, despite consistent long-term temperature trends, short-term fluctuations prove to be considerably nonlinear, time-lagged, and multivariate-coupled due to the unique microclimate of the greenhouse. Addressing this, we propose a novel short-term multi-step prediction model that assimilates a range of environmental data including air temperature, humidity, soil temperature, and soil moisture content at diverse greenhouse heights. This model utilizes an Attention-LSTM based time series approach to accurately predict multi-step short-term temperature variations within the greenhouse. By employing a modest amount of historical data (approximately 48 h), the model provides future temperature forecasts within a range of 30 to 480 min with high accuracy. When benchmarked against renowned models such as RNN, GRU, and LSTM networks, our proposed models display impressive performance. It achieved R2 values of 0.93, 0.94, 0.95, and 0.86 for 1, 4, 8, and 16-step predictions, respectively, in the domain of air temperature forecasting. The corresponding MSE values stood at 0.42, 0.32, 0.27, and 0.81. In parallel, for soil temperature forecasts, our model recorded R2 values of 0.96, 0.94, 0.92, and 0.89 for 1, 4, 8, and 16-step predictions, respectively, alongside MSE values of 0.36, 0.48, 0.73, and 0.99 for the equivalent steps. To conclude, these results reveal the exceptional predictive aptitude of our model for both air and soil temperature forecasts within greenhouse environments, validating its standing as an effective tool for the optimization of vegetable farming practices. Consequently, our model demonstrates its ability to yield precise predictions of environmental variables within greenhouses, offering crucial early warning mechanisms for the enhancement of vegetable cultivation processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青菜完成签到,获得积分10
刚刚
刚刚
1秒前
bkagyin应助chelsea采纳,获得10
2秒前
2秒前
羽翼发布了新的文献求助10
3秒前
4秒前
安静大树完成签到,获得积分10
5秒前
务实寒天发布了新的文献求助10
5秒前
彭于晏应助坚强的大地采纳,获得10
5秒前
大方万仇完成签到 ,获得积分10
6秒前
kiki完成签到,获得积分10
6秒前
酷波er应助执着采纳,获得10
6秒前
qifunongsuo1213完成签到,获得积分10
6秒前
z_king_d_23完成签到,获得积分10
6秒前
佳妮发布了新的文献求助10
6秒前
6秒前
小蘑菇应助Helen采纳,获得10
6秒前
虚幻若灵发布了新的文献求助10
6秒前
xxx完成签到,获得积分20
7秒前
7秒前
壮观的菠萝完成签到,获得积分10
7秒前
Pweni应助凌风采纳,获得30
8秒前
挖掘机应助凌风采纳,获得200
8秒前
彭于晏应助cly采纳,获得10
8秒前
龙潜胜完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
茉行完成签到,获得积分10
9秒前
10秒前
香蕉茹妖发布了新的文献求助10
10秒前
吃大肉完成签到,获得积分10
11秒前
Shan5发布了新的文献求助30
11秒前
slowride发布了新的文献求助10
11秒前
尤水绿应助咕噜采纳,获得20
12秒前
一人完成签到,获得积分10
13秒前
SSL完成签到,获得积分10
13秒前
彭于晏应助阳光的星月采纳,获得10
14秒前
Ryan发布了新的文献求助10
14秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
HVAC 1 toolkit : a toolkit for primary HVAC system energy calculation 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839516
求助须知:如何正确求助?哪些是违规求助? 3381896
关于积分的说明 10520288
捐赠科研通 3101306
什么是DOI,文献DOI怎么找? 1708031
邀请新用户注册赠送积分活动 822099
科研通“疑难数据库(出版商)”最低求助积分说明 773174