Deep learning-based automated detection of the dental crown finish line: An accuracy study

终点线 软件 计算机科学 斜面 倒角(几何图形) 人工智能 口腔正畸科 计算机视觉 数学 医学 工程类 种族(生物学) 生物 结构工程 植物 程序设计语言 几何学
作者
Jinhyeok Choi,Junseong Ahn,Ji‐Man Park
出处
期刊:Journal of Prosthetic Dentistry [Elsevier]
卷期号:132 (6): 1286.e1-1286.e9 被引量:26
标识
DOI:10.1016/j.prosdent.2023.11.018
摘要

Statement of problem The marginal fit of dental prostheses is a clinically significant issue, and dental computer-aided design software programs use automated methods to expedite the extraction of finish lines. The accuracy of these automated methods should be evaluated. Purpose The purpose of this study was to compare the accuracy of a new hybrid method with existing software programs that extract finish lines using fully automated and semiautomated methods. Material and methods A total of 182 jaw scans containing at least 1 natural tooth abutment were collected and divided into 2 groups depending on how the digital data were created. Group DS used desktop scanners to scan casts trimmed for improved finish line visibility, while Group IS used intraoral scans. The method from Dentbird was compared using 3 software packages from 3Shape, exocad, and MEDIT. The Hausdorff and Chamfer distances were used in this study. Three dental laboratory technicians experienced in the digital workflow evaluated clinical finish line acceptance and its Hausdorff and Chamfer distances. For statistical analysis, t tests were performed after the outliers had been removed using the Tukey interquartile range method (α=.05). Results Outliers identified by using the Tukey interquartile range method were more numerous in the semiautomatic methods than in the automatic methods. When considering data without outliers, the software performance was found to be similar for desktop scans of the trimmed casts. However, the method from Dentbird demonstrated statistically better results (P<.05) for the posterior tooth with finish lines in concave regions than the 3Shape, exocad, and MEDIT software programs. Furthermore, thresholds coherent with clinical acceptance were determined for the Hausdorff and Chamfer distances. The Hausdorff distance threshold was 0.366 mm for desktop scans and 0.566 mm for intraoral scans. For the Chamfer distance, the threshold was 0.026 for desktop scans and 0.100 for intraoral scans. Conclusions The method from Dentbird demonstrated a comparable or better performance than the other software solutions, particularly excelling in finish line extraction for intraoral scans. Using a hybrid method combining deep learning and computer-aided design approaches enables the robust and accurate extraction of finish lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bkagyin应助12233采纳,获得10
刚刚
1秒前
芳菲依旧应助知止采纳,获得30
1秒前
1秒前
猪蹄发布了新的文献求助10
1秒前
科研通AI6应助xuan采纳,获得10
1秒前
田様应助xuan采纳,获得10
1秒前
Ava应助Gemination采纳,获得10
1秒前
喂喂喂发布了新的文献求助10
1秒前
科研通AI6应助xuan采纳,获得10
1秒前
大模型应助xuan采纳,获得10
1秒前
pluto应助xuan采纳,获得10
1秒前
科研通AI6应助xuan采纳,获得10
1秒前
科研通AI6应助xuan采纳,获得10
1秒前
科研通AI6应助xuan采纳,获得10
1秒前
科研通AI6应助xuan采纳,获得10
1秒前
Live应助xuan采纳,获得10
1秒前
1秒前
橘子完成签到,获得积分10
2秒前
邓欣怡完成签到,获得积分20
2秒前
3秒前
3秒前
灵巧的世德完成签到,获得积分20
3秒前
pbj发布了新的文献求助10
3秒前
你学习了吗我学不了一点完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
阔达尔白完成签到,获得积分10
4秒前
4秒前
Chaos发布了新的文献求助10
5秒前
5秒前
HWX完成签到,获得积分10
5秒前
fmy发布了新的文献求助10
5秒前
6秒前
柚子发布了新的文献求助10
6秒前
SJJ应助Angelina采纳,获得50
6秒前
由哎完成签到,获得积分10
6秒前
wos关闭了wos文献求助
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661636
求助须知:如何正确求助?哪些是违规求助? 4839197
关于积分的说明 15096709
捐赠科研通 4820305
什么是DOI,文献DOI怎么找? 2579804
邀请新用户注册赠送积分活动 1534100
关于科研通互助平台的介绍 1492773