已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of Remaining Useful Life of Rolling Bearings Based on Multiscale Efficient Channel Attention CNN and Bidirectional GRU

计算机科学 频道(广播) 电子工程 人工智能 模式识别(心理学) 工程类 电信
作者
Ping Ma,Guangfu Li,Hongli Zhang,Cong Wang,Xinkai Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13 被引量:11
标识
DOI:10.1109/tim.2023.3347787
摘要

To effectively capture both local and global features while retaining temporal dependencies in time-series data, and to improve the accuracy of remaining useful life (RUL) prediction of rolling bearings, this paper proposes a hybrid architecture based on a multi-scale efficient channel attention convolutional neural network and bidirectional gated recurrent unit networks. The method based on based on multi-scale efficient channel attention CNN and bidirectional GRU, which is abbreviated MSECNN-BIGRU. The multi-scale efficient channel attention CNN (MSECNN) module can use both local and global features by incorporating multi-scale features and the efficient channel attention mechanism. Considering the superiority of a CNN in processing image data, the Gram angle field theory was applied to translate the one-dimensional vibration signal into Gram's angle difference field image as the input for the MSECNN model. During the subsequent prediction process, bidirectional GRU (BIGRU) networks were proposed to avoid the one-way GRU model ignoring the influence of the next time series. In the BIGRU, the GRU was applied in both forward and backward directions to fully extract relevant information from the front and back of the sequence data, thereby improving the prediction performance of the model. By combining these modules, the MSECNN-BIGRU model could accurately predict the RUL of rolling bearings. The experimental results showed that the MSECNN-BIGRU model outperformed other classical models, making it a reliable model for predicting the RUL of rolling bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助应稀采纳,获得10
刚刚
大个应助友好诗蕾采纳,获得10
1秒前
王鑫完成签到,获得积分10
7秒前
827584450应助圈圈采纳,获得10
8秒前
9秒前
13秒前
15秒前
15秒前
共产主义接班人完成签到,获得积分10
17秒前
18秒前
友好诗蕾发布了新的文献求助10
18秒前
19秒前
fl发布了新的文献求助10
21秒前
lena发布了新的文献求助30
22秒前
一木张发布了新的文献求助10
23秒前
23秒前
丘比特应助漂亮寻云采纳,获得10
24秒前
Vintage发布了新的文献求助10
25秒前
科研通AI2S应助DDDD采纳,获得10
27秒前
Ava应助Q人士采纳,获得10
29秒前
lena完成签到,获得积分10
29秒前
HandsomeShaw完成签到,获得积分10
30秒前
23lk发布了新的文献求助10
30秒前
一木张完成签到,获得积分10
33秒前
YOUNG关注了科研通微信公众号
37秒前
xiaoguo完成签到,获得积分10
40秒前
42秒前
科研通AI5应助默默的鬼神采纳,获得10
46秒前
依克完成签到,获得积分10
47秒前
Q人士发布了新的文献求助10
47秒前
48秒前
50秒前
53秒前
脑洞疼应助科研通管家采纳,获得10
55秒前
小二郎应助科研通管家采纳,获得10
55秒前
小二郎应助科研通管家采纳,获得10
55秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
华仔应助科研通管家采纳,获得10
55秒前
充电宝应助科研通管家采纳,获得10
55秒前
zho应助科研通管家采纳,获得10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Technologies supporting mass customization of apparel: A pilot project 300
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780712
求助须知:如何正确求助?哪些是违规求助? 3326219
关于积分的说明 10226204
捐赠科研通 3041293
什么是DOI,文献DOI怎么找? 1669330
邀请新用户注册赠送积分活动 799040
科研通“疑难数据库(出版商)”最低求助积分说明 758723