Comparison of deep learning methods for the radiographic detection of patients with different periodontitis stages

人工智能 联营 卷积神经网络 计算机科学 模式识别(心理学) 射线照相术 支持向量机 Softmax函数 特征选择 深度学习 特征提取 机器学习 医学 放射科
作者
Berceste Guler Ayyıldız,Rukiye Karakış,Büşra Terzioğlu,Durmuş Özdemir
出处
期刊:Dentomaxillofacial Radiology [Oxford University Press]
卷期号:53 (1): 32-42 被引量:9
标识
DOI:10.1093/dmfr/twad003
摘要

Abstract Objectives The objective of this study is to assess the accuracy of computer-assisted periodontal classification bone loss staging using deep learning (DL) methods on panoramic radiographs and to compare the performance of various models and layers. Methods Panoramic radiographs were diagnosed and classified into 3 groups, namely “healthy,” “Stage1/2,” and “Stage3/4,” and stored in separate folders. The feature extraction stage involved transferring and retraining the feature extraction layers and weights from 3 models, namely ResNet50, DenseNet121, and InceptionV3, which were proposed for classifying the ImageNet dataset, to 3 DL models designed for classifying periodontal bone loss. The features obtained from global average pooling (GAP), global max pooling (GMP), or flatten layers (FL) of convolutional neural network (CNN) models were used as input to the 8 different machine learning (ML) models. In addition, the features obtained from the GAP, GMP, or FL of the DL models were reduced using the minimum redundancy maximum relevance (mRMR) method and then classified again with 8 ML models. Results A total of 2533 panoramic radiographs, including 721 in the healthy group, 842 in the Stage1/2 group, and 970 in the Stage3/4 group, were included in the dataset. The average performance values of DenseNet121 + GAP-based and DenseNet121 + GAP + mRMR-based ML techniques on 10 subdatasets and ML models developed using 2 feature selection techniques outperformed CNN models. Conclusions The new DenseNet121 + GAP + mRMR-based support vector machine model developed in this study achieved higher performance in periodontal bone loss classification compared to other models in the literature by detecting effective features from raw images without the need for manual selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哆啦A梦完成签到,获得积分10
3秒前
酷波er应助单薄的代荷采纳,获得10
5秒前
郭义敏完成签到,获得积分0
5秒前
6秒前
缘分完成签到,获得积分10
11秒前
背背佳永远happy完成签到 ,获得积分10
12秒前
12秒前
12秒前
认真丹亦完成签到 ,获得积分10
13秒前
55完成签到,获得积分10
15秒前
乘风破浪完成签到 ,获得积分10
17秒前
judy完成签到,获得积分10
17秒前
沐沐完成签到,获得积分10
17秒前
白也完成签到,获得积分10
17秒前
Lisztan完成签到,获得积分10
17秒前
爱你的心完成签到 ,获得积分10
20秒前
欢呼阁完成签到,获得积分10
20秒前
孟寐以求完成签到 ,获得积分10
22秒前
adjuster完成签到,获得积分10
22秒前
Andy完成签到 ,获得积分10
22秒前
司徒诗蕾完成签到 ,获得积分10
23秒前
杨一完成签到 ,获得积分10
25秒前
even完成签到 ,获得积分10
30秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
33秒前
所所应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
舒心的青槐完成签到 ,获得积分10
36秒前
七里香完成签到 ,获得积分10
38秒前
38秒前
严西完成签到,获得积分10
39秒前
研友_ZlqeD8完成签到,获得积分10
40秒前
流光完成签到,获得积分10
40秒前
珂珂完成签到 ,获得积分10
40秒前
40秒前
不愿透露姓名科研人完成签到 ,获得积分10
42秒前
蛋花肉圆汤完成签到,获得积分10
44秒前
Tonald Yang发布了新的文献求助10
46秒前
顺利兰完成签到 ,获得积分10
47秒前
anne完成签到 ,获得积分10
53秒前
53秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798555
求助须知:如何正确求助?哪些是违规求助? 3344104
关于积分的说明 10318518
捐赠科研通 3060679
什么是DOI,文献DOI怎么找? 1679753
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353