Preparation and Electrochemical Performance of Na2−xLixFePO4F/C Composite Cathode Materials with Different Lithium/Sodium Ratios

电化学 材料科学 阴极 锂(药物) 化学工程 透射电子显微镜 离子 电极 分析化学(期刊) 纳米技术 化学 冶金 色谱法 物理化学 工程类 内分泌学 有机化学 医学
作者
L. Wang,Hualing Tian,Yang Xiang,Yanfei Cai,Ziwei Gao,Zhi Su
出处
期刊:Micromachines [Multidisciplinary Digital Publishing Institute]
卷期号:15 (1): 15-15
标识
DOI:10.3390/mi15010015
摘要

With their advantages of abundant raw material reserves, safety, and low toxicity and cost, sodium-ion batteries (SIBs) have gained increasing attention in recent years. Thanks to a high theoretical specific capacity (124 mAh g−1), a high operating voltage (about 3.2 V), and a very stable three-dimensional layered structure, sodium ferric fluorophosphate (Na2FePO4F, NFPF) has emerged as a strong candidate to be used as a cathode material for SIBs. However, applications are currently limited due to the low electronic conductivity and slow ion diffusion rate of NFPF, which result in a low actual specific capacity and a high rate performance. In this study, the authors used a high-temperature solid-phase technique to produce Na2−xLixFePO4F/C (0 ≤ x ≤ 2) and evaluated the impact on electrode performance of materials with different Na+ and Li+ contents (values of x). Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were also used to analyze the material’s crystal structure and nanostructure. The results show that the material had the best room-temperature performance when x = 0.5. At a charge–discharge rate of 0.1 C, the first discharge-specific capacity of the resulting Na1.5Li0.5FePO4F/C cathode material was 122.9 mAh g−1 (the theoretical capacity was 124 mAh g−1), and after 100 cycles, it remained at 118 mAh g−1, representing a capacity retention rate of 96.2% and a Coulomb efficiency of 98%. The findings of this study demonstrate that combining lithium and sodium ions improves the electrochemical performance of electrode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助此间少年采纳,获得10
刚刚
。。。发布了新的文献求助10
刚刚
超体完成签到 ,获得积分10
1秒前
2秒前
思源应助阿拉蕾采纳,获得10
2秒前
2秒前
2秒前
chup发布了新的文献求助20
2秒前
科目三应助yuzhanli采纳,获得10
3秒前
3秒前
果冻泥发布了新的文献求助10
3秒前
3秒前
6秒前
6秒前
dddyrrrrr完成签到 ,获得积分10
7秒前
Altria发布了新的文献求助10
7秒前
7秒前
宋宋发布了新的文献求助10
7秒前
gcy发布了新的文献求助10
8秒前
有我ID随机吗完成签到,获得积分10
8秒前
8秒前
9秒前
一万光年完成签到,获得积分10
9秒前
chup完成签到,获得积分10
10秒前
10秒前
10秒前
诺坎普的晚风完成签到,获得积分10
10秒前
一万光年发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
角鸮完成签到,获得积分10
13秒前
13秒前
852应助放寒假的采纳,获得10
14秒前
PROPELLER发布了新的文献求助10
14秒前
kiki发布了新的文献求助10
14秒前
haix发布了新的文献求助30
14秒前
等风来、云飞扬完成签到,获得积分10
15秒前
三月完成签到,获得积分20
15秒前
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
高性能灰铸铁材质控制技术与应用 250
Experimental Design for the Life Sciences 200
Semiconductor Wafer Bonding: Science Technology, and Applications VI 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835916
求助须知:如何正确求助?哪些是违规求助? 3378305
关于积分的说明 10503346
捐赠科研通 3097816
什么是DOI,文献DOI怎么找? 1706112
邀请新用户注册赠送积分活动 820776
科研通“疑难数据库(出版商)”最低求助积分说明 772292