亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Condition-Based Production for Stochastically Deteriorating Systems: Optimal Policies and Learning

生产(经济) 马尔可夫决策过程 区间(图论) 收入 关系(数据库) 计算机科学 数学优化 航程(航空) 马尔可夫过程 运筹学 经济 微观经济学 数学 统计 工程类 会计 组合数学 数据库 航空航天工程
作者
Collin Drent,Melvin Drent,Joachim Arts
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (3): 1137-1156 被引量:9
标识
DOI:10.1287/msom.2022.0473
摘要

Problem definition: Production systems deteriorate stochastically due to use and may eventually break down, resulting in high maintenance costs at scheduled maintenance moments. This deterioration behavior is affected by the system’s production rate. Although producing at a higher rate generates more revenue, the system may also deteriorate faster. Production should thus be controlled dynamically to tradeoff deterioration and revenue accumulation in between maintenance moments. We study systems for which the relation between production and deterioration is known and the same for each system and systems for which this relation differs from system to system and needs to be learned on-the-fly. The decision problem is to find the optimal production policy given planned maintenance moments (operational) and the optimal interval length between such maintenance moments (tactical). Methodology/results: For systems with a known production-deterioration relation, we cast the operational decision problem as a continuous time Markov decision process and prove that the optimal policy has intuitive monotonic properties. We also present sufficient conditions for the optimality of bang-bang policies, and we partially characterize the structure of the optimal interval length, thereby enabling efficient joint optimization of the operational and tactical decision problem. For systems that exhibit variability in their production-deterioration relations, we propose a Bayesian procedure to learn the unknown deterioration rate under any production policy. Numerical studies indicate that on average across a wide range of settings (i) condition-based production increases profits by 50% compared with static production, (ii) integrating condition-based production and maintenance decisions increases profits by 21% compared with the state-of-the-art sequential approach, and (iii) our Bayesian approach performs close, especially in the bang-bang regime, to an Oracle policy that knows each system’s production-deterioration relation. Managerial implications: Production should be adjusted dynamically based on real-time condition monitoring and the tactical maintenance planning should anticipate and integrate these operational decisions. Our proposed framework assists managers to do so optimally. Funding: This work was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Grant 439.17.708]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0473 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr完成签到,获得积分10
5秒前
俭朴兔子完成签到,获得积分10
7秒前
16秒前
21秒前
25秒前
29秒前
zhaoshuo发布了新的文献求助10
31秒前
32秒前
田様应助氯化氟采纳,获得10
33秒前
lun完成签到 ,获得积分10
41秒前
47秒前
啵子发布了新的文献求助10
52秒前
旺仔先生完成签到,获得积分10
56秒前
56秒前
ll完成签到 ,获得积分10
58秒前
weiut发布了新的文献求助10
1分钟前
852应助mjsdx采纳,获得10
1分钟前
zhaoshuo发布了新的文献求助10
1分钟前
HJJHJH完成签到,获得积分10
1分钟前
桐桐应助冀东采纳,获得30
1分钟前
1分钟前
CodeCraft应助啵子采纳,获得10
1分钟前
HJJHJH发布了新的文献求助30
1分钟前
aks关闭了aks文献求助
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
庭柯南桥发布了新的文献求助10
1分钟前
风华正茂完成签到,获得积分10
1分钟前
Kirin完成签到,获得积分10
1分钟前
1分钟前
Tree完成签到 ,获得积分10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
yr应助科研通管家采纳,获得10
1分钟前
梨凉发布了新的文献求助10
1分钟前
大胆剑封完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779942
求助须知:如何正确求助?哪些是违规求助? 5650975
关于积分的说明 15452581
捐赠科研通 4910875
什么是DOI,文献DOI怎么找? 2643040
邀请新用户注册赠送积分活动 1590694
关于科研通互助平台的介绍 1545122