Condition-Based Production for Stochastically Deteriorating Systems: Optimal Policies and Learning

生产(经济) 马尔可夫决策过程 区间(图论) 收入 关系(数据库) 计算机科学 数学优化 航程(航空) 马尔可夫过程 运筹学 经济 微观经济学 数学 统计 工程类 组合数学 会计 航空航天工程 数据库
作者
Collin Drent,Melvin Drent,Joachim Arts
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (3): 1137-1156 被引量:8
标识
DOI:10.1287/msom.2022.0473
摘要

Problem definition: Production systems deteriorate stochastically due to use and may eventually break down, resulting in high maintenance costs at scheduled maintenance moments. This deterioration behavior is affected by the system’s production rate. Although producing at a higher rate generates more revenue, the system may also deteriorate faster. Production should thus be controlled dynamically to tradeoff deterioration and revenue accumulation in between maintenance moments. We study systems for which the relation between production and deterioration is known and the same for each system and systems for which this relation differs from system to system and needs to be learned on-the-fly. The decision problem is to find the optimal production policy given planned maintenance moments (operational) and the optimal interval length between such maintenance moments (tactical). Methodology/results: For systems with a known production-deterioration relation, we cast the operational decision problem as a continuous time Markov decision process and prove that the optimal policy has intuitive monotonic properties. We also present sufficient conditions for the optimality of bang-bang policies, and we partially characterize the structure of the optimal interval length, thereby enabling efficient joint optimization of the operational and tactical decision problem. For systems that exhibit variability in their production-deterioration relations, we propose a Bayesian procedure to learn the unknown deterioration rate under any production policy. Numerical studies indicate that on average across a wide range of settings (i) condition-based production increases profits by 50% compared with static production, (ii) integrating condition-based production and maintenance decisions increases profits by 21% compared with the state-of-the-art sequential approach, and (iii) our Bayesian approach performs close, especially in the bang-bang regime, to an Oracle policy that knows each system’s production-deterioration relation. Managerial implications: Production should be adjusted dynamically based on real-time condition monitoring and the tactical maintenance planning should anticipate and integrate these operational decisions. Our proposed framework assists managers to do so optimally. Funding: This work was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Grant 439.17.708]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0473 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助Yolo采纳,获得10
1秒前
ASZXDW完成签到,获得积分10
1秒前
2秒前
2秒前
SAKURA应助peaches702采纳,获得10
2秒前
酷波er应助呆萌笑晴采纳,获得10
4秒前
ss发布了新的文献求助10
4秒前
别介完成签到,获得积分10
4秒前
Awenst12完成签到,获得积分10
4秒前
Ava应助三泥采纳,获得10
4秒前
咕饼发布了新的文献求助10
5秒前
丘比特应助初空月儿采纳,获得10
6秒前
Xx发布了新的文献求助10
6秒前
镓氧锌钇铀应助geoman采纳,获得10
7秒前
小二郎应助科研剧中人采纳,获得10
7秒前
包语梦发布了新的文献求助10
7秒前
花露水完成签到,获得积分10
9秒前
10秒前
潘雨露完成签到,获得积分10
12秒前
12秒前
qiaoshan_Jason完成签到,获得积分10
13秒前
13秒前
13秒前
花露水发布了新的文献求助30
13秒前
大模型应助包容友灵采纳,获得10
13秒前
14秒前
小小莫发布了新的文献求助10
14秒前
yyy发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
传奇3应助喜悦的虔采纳,获得10
17秒前
www发布了新的文献求助10
17秒前
鱼丸发布了新的文献求助10
18秒前
Febberry完成签到,获得积分10
18秒前
jzx发布了新的文献求助10
19秒前
xkhxh完成签到 ,获得积分10
19秒前
搜集达人应助J_C_Van采纳,获得10
19秒前
燕子完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462518
求助须知:如何正确求助?哪些是违规求助? 4567225
关于积分的说明 14309649
捐赠科研通 4493103
什么是DOI,文献DOI怎么找? 2461427
邀请新用户注册赠送积分活动 1450522
关于科研通互助平台的介绍 1425854