Condition-Based Production for Stochastically Deteriorating Systems: Optimal Policies and Learning

生产(经济) 马尔可夫决策过程 区间(图论) 收入 关系(数据库) 计算机科学 数学优化 航程(航空) 马尔可夫过程 运筹学 经济 微观经济学 数学 统计 工程类 会计 组合数学 数据库 航空航天工程
作者
Collin Drent,Melvin Drent,Joachim Arts
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (3): 1137-1156 被引量:4
标识
DOI:10.1287/msom.2022.0473
摘要

Problem definition: Production systems deteriorate stochastically due to use and may eventually break down, resulting in high maintenance costs at scheduled maintenance moments. This deterioration behavior is affected by the system’s production rate. Although producing at a higher rate generates more revenue, the system may also deteriorate faster. Production should thus be controlled dynamically to tradeoff deterioration and revenue accumulation in between maintenance moments. We study systems for which the relation between production and deterioration is known and the same for each system and systems for which this relation differs from system to system and needs to be learned on-the-fly. The decision problem is to find the optimal production policy given planned maintenance moments (operational) and the optimal interval length between such maintenance moments (tactical). Methodology/results: For systems with a known production-deterioration relation, we cast the operational decision problem as a continuous time Markov decision process and prove that the optimal policy has intuitive monotonic properties. We also present sufficient conditions for the optimality of bang-bang policies, and we partially characterize the structure of the optimal interval length, thereby enabling efficient joint optimization of the operational and tactical decision problem. For systems that exhibit variability in their production-deterioration relations, we propose a Bayesian procedure to learn the unknown deterioration rate under any production policy. Numerical studies indicate that on average across a wide range of settings (i) condition-based production increases profits by 50% compared with static production, (ii) integrating condition-based production and maintenance decisions increases profits by 21% compared with the state-of-the-art sequential approach, and (iii) our Bayesian approach performs close, especially in the bang-bang regime, to an Oracle policy that knows each system’s production-deterioration relation. Managerial implications: Production should be adjusted dynamically based on real-time condition monitoring and the tactical maintenance planning should anticipate and integrate these operational decisions. Our proposed framework assists managers to do so optimally. Funding: This work was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Grant 439.17.708]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0473 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
俊逸的香萱完成签到 ,获得积分10
3秒前
5秒前
pilot完成签到,获得积分10
5秒前
6秒前
zhengmeilin发布了新的文献求助10
13秒前
海盗船长完成签到,获得积分10
16秒前
2211完成签到,获得积分10
16秒前
lwl666完成签到,获得积分10
17秒前
ZJF完成签到,获得积分10
22秒前
29秒前
石莫言完成签到,获得积分10
31秒前
英姑应助海东南采纳,获得10
31秒前
33秒前
渔舟唱晚发布了新的文献求助10
34秒前
852发布了新的文献求助10
37秒前
画舫完成签到,获得积分10
38秒前
书笙发布了新的文献求助10
38秒前
39秒前
41秒前
dennisysz发布了新的文献求助10
41秒前
酷波er应助aq采纳,获得30
43秒前
44秒前
11uLt7完成签到 ,获得积分10
46秒前
脑洞疼应助书笙采纳,获得10
46秒前
47秒前
渔舟唱晚完成签到,获得积分20
48秒前
MchemG应助紧张的大象采纳,获得10
49秒前
海东南发布了新的文献求助10
52秒前
52秒前
54秒前
蘅皋发布了新的文献求助10
56秒前
HITvagary完成签到 ,获得积分10
56秒前
Doublelin完成签到,获得积分10
58秒前
英俊的铭应助852采纳,获得10
59秒前
Doublelin发布了新的文献求助10
1分钟前
江城一霸发布了新的文献求助10
1分钟前
谦让寒云完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777367
求助须知:如何正确求助?哪些是违规求助? 3322743
关于积分的说明 10211437
捐赠科研通 3038087
什么是DOI,文献DOI怎么找? 1667060
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758103