Complementarity-Aware Local–Global Feature Fusion Network for Building Extraction in Remote Sensing Images

特征提取 计算机科学 遥感 互补性(分子生物学) 人工智能 融合 传感器融合 模式识别(心理学) 计算机视觉 地质学 语言学 遗传学 生物 哲学
作者
Wei Fu,Kai Xie,Leyuan Fang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:7
标识
DOI:10.1109/tgrs.2024.3370714
摘要

Building extraction is a challenging research direction in remote sensing image (RSI) interpretation. Due to the fact that a building has not only its own local structures but also similar architectural styles with other buildings located in a global area (e.g., street or community), fusing local and global features becomes a promising way to improve performance of building extraction. Focused on this, we propose a new complementarity-aware local-global feature fusion network (CLGFF-Net) by integrating a convolutional branch and a Transformer branch. The two branches respectively capture local patterns and global long-range dependencies of RSIs, thereby leading to highly complementary features. To dig out the implicit complementary information for fusion, we develop a complementarity-aware fusion module (CFM) which separates shared features (SFs) and distinct features (DFs) between two branches, by building a commonalities analysis path and two difference analysis paths. Meanwhile, to make sure the similarity of SFs and dissimilarity of DFs, a triplet loss function is designed to enforce the distances between SFs to be near and DFs to be far. By this way, complementary information can be explicitly included in DFs and is adaptively exchanged between two branches for fusion. Besides, since multilayer features in each branch generally convey different-level semantic information, a multi-layer fusion scheme (MLFS) is designed to fuse them by introducing cross-layer connections and gate mechanism. By coupling CFMs with MLFS, the abilities in characterizing local and global context information, as well as different-level semantic information, can be fully exploited for better mapping of complicated building objects. Experimental results demonstrate the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传奇3应助前进的小宅熊采纳,获得10
刚刚
Suzi完成签到,获得积分10
1秒前
王饼干完成签到,获得积分10
2秒前
王阳豪发布了新的文献求助10
3秒前
Suzi发布了新的文献求助10
4秒前
4秒前
4秒前
万老头发布了新的文献求助10
5秒前
科研通AI5应助博修采纳,获得10
5秒前
蓬莱依月发布了新的文献求助10
5秒前
今后应助陈昭琼采纳,获得10
5秒前
7秒前
领衔完成签到,获得积分10
8秒前
jianglili完成签到,获得积分10
8秒前
8秒前
鉴衡完成签到,获得积分10
9秒前
9秒前
笨笨芯发布了新的文献求助10
9秒前
不想动的苹果完成签到,获得积分20
11秒前
大佬发布了新的文献求助10
11秒前
11秒前
11秒前
子非魚完成签到,获得积分10
11秒前
CodeCraft应助万老头采纳,获得10
12秒前
wangxin完成签到,获得积分10
13秒前
13秒前
14秒前
杨奇定发布了新的文献求助10
14秒前
14秒前
快乐无极限完成签到,获得积分10
15秒前
15秒前
kukude完成签到,获得积分10
15秒前
墨鱼丸完成签到 ,获得积分10
16秒前
鉴衡发布了新的文献求助10
17秒前
ix1完成签到 ,获得积分10
18秒前
18秒前
陈昭琼发布了新的文献求助10
18秒前
19秒前
子非魚发布了新的文献求助10
20秒前
高分求助中
How Maoism Was Made: Reconstructing China, 1949-1965 1200
Quantum reference frames : from quantum information to spacetime 888
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4388437
求助须知:如何正确求助?哪些是违规求助? 3880048
关于积分的说明 12085078
捐赠科研通 3523799
什么是DOI,文献DOI怎么找? 1933764
邀请新用户注册赠送积分活动 974596
科研通“疑难数据库(出版商)”最低求助积分说明 872733