A Global Solution Approach to the Energy-Efficient Ladle Dispatching Problem With Refractory Temperature Control

钢包 耐火材料(行星科学) 温度控制 计算机科学 控制(管理) 高效能源利用 数学优化 材料科学 控制工程 工程类 冶金 数学 电气工程 人工智能
作者
Victor Ruela,Paul van Beurden,S. Sinnema,René Hofmann,Felix Birkelbach
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 137718-137733 被引量:3
标识
DOI:10.1109/access.2023.3339392
摘要

The discussion of energy efficiency in the steel ladle dispatching literature is currently limited to indirectly minimizing waiting and heating times. Not explicitly considering the ladle’s thermal balance may lead to sub-optimal solutions and safety concerns regarding the condition of the refractory lining. Hence, this paper studies the energy-efficient ladle dispatching problem with refractory temperature control. A mixed integer linear problem for ladle dispatching that integrates its energy balance is presented. It enables the global solution of the problem using state-of-the-art mixed integer programming solvers. This is achieved by applying piecewise linear models with logarithmic coding to approximate the energy balance. Computational results show that the number of breakpoints employed significantly affects the approximation quality and solution time. However, we show that the error does not affect the feasibility of the problem and yields a negligible difference of 1.4% in the objective function. Hence, this viable approach enables a proper discussion on the energy efficiency of ladle dispatching decisions. For a small but representative production scenario from Tata Steel, IJmuiden, we design and execute an experiment to define a set of operational rules and discuss the potential energy savings. We conclude by presenting the existing compromise between the CO2 emissions from re-heating the ladles and the reduction in the steel temperature losses from the improved thermal management of the ladles. We show that the average steel temperature losses can be reduced up to 3 °C depending on the refractory temperature requirement. This has the potential to unlock further savings for steelmakers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
老阳发布了新的文献求助20
1秒前
faye发布了新的文献求助10
2秒前
激昂的飞松完成签到,获得积分10
2秒前
麻瓜完成签到,获得积分10
3秒前
3秒前
兴奋的嘉懿完成签到,获得积分20
3秒前
elapse关注了科研通微信公众号
4秒前
俏皮的采蓝完成签到,获得积分10
6秒前
mmm完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
YAN发布了新的文献求助10
6秒前
Mic应助哆来米采纳,获得10
7秒前
崔双艳完成签到,获得积分10
7秒前
香雪球完成签到,获得积分10
10秒前
读者9527完成签到,获得积分10
10秒前
10秒前
DAISY发布了新的文献求助10
10秒前
无花果应助Ann采纳,获得10
11秒前
悠悠应助guagua采纳,获得20
11秒前
思晗发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
13秒前
faye完成签到,获得积分20
14秒前
14秒前
谢之阳完成签到,获得积分10
15秒前
发发完成签到,获得积分10
16秒前
16秒前
李健应助不行就相比较采纳,获得10
16秒前
YAN完成签到,获得积分10
16秒前
16秒前
孙伟健发布了新的文献求助10
17秒前
陈冠希发布了新的文献求助30
17秒前
18秒前
谢之阳发布了新的文献求助10
18秒前
桑桑发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5686010
求助须知:如何正确求助?哪些是违规求助? 5048046
关于积分的说明 15189497
捐赠科研通 4845131
什么是DOI,文献DOI怎么找? 2597880
邀请新用户注册赠送积分活动 1550227
关于科研通互助平台的介绍 1508541