亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detecting Human Trafficking: Automated Classification of Online Customer Reviews of Massage Businesses

利用 计算机科学 词典 执法 相关性(法律) 集合预报 人工智能 机器学习 计算机安全 数据科学 互联网隐私 政治学 法学
作者
Ruoting Li,Margaret Tobey,María E. Mayorga,Sherrie Caltagirone,Osman Y. Özaltın
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:25 (3): 1051-1065 被引量:14
标识
DOI:10.1287/msom.2023.1196
摘要

Problem definition: Approximately 11,000 alleged illicit massage businesses (IMBs) exist across the United States hidden in plain sight among legitimate businesses. These illicit businesses frequently exploit workers, many of whom are victims of human trafficking, forced or coerced to provide commercial sex. Academic/practical relevance: Although IMB review boards like Rubmaps.ch can provide first-hand information to identify IMBs, these sites are likely to be closed by law enforcement. Open websites like Yelp.com provide more accessible and detailed information about a larger set of massage businesses. Reviews from these sites can be screened for risk factors of trafficking. Methodology: We develop a natural language processing approach to detect online customer reviews that indicate a massage business is likely engaged in human trafficking. We label data sets of Yelp reviews using knowledge of known IMBs. We develop a lexicon of key words/phrases related to human trafficking and commercial sex acts. We then build two classification models based on this lexicon. We also train two classification models using embeddings from the bidirectional encoder representations from transformers (BERT) model and the Doc2Vec model. Results: We evaluate the performance of these classification models and various ensemble models. The lexicon-based models achieve high precision, whereas the embedding-based models have relatively high recall. The ensemble models provide a compromise and achieve the best performance on the out-of-sample test. Our results verify the usefulness of ensemble methods for building robust models to detect risk factors of human trafficking in reviews on open websites like Yelp. Managerial implications: The proposed models can save countless hours in IMB investigations by automatically sorting through large quantities of data to flag potential illicit activity, eliminating the need for manual screening of these reviews by law enforcement and other stakeholders. Funding: This work was supported by the National Science Foundation [Grant 1936331]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.1196 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jojo关注了科研通微信公众号
38秒前
47秒前
Jojo发布了新的文献求助10
54秒前
gszy1975完成签到,获得积分10
1分钟前
Jojo完成签到,获得积分10
1分钟前
江江应助lemon采纳,获得10
1分钟前
2分钟前
兴尽晚回舟完成签到 ,获得积分10
2分钟前
wkjfh应助shier采纳,获得10
2分钟前
典雅的觅儿完成签到,获得积分10
3分钟前
wpj发布了新的文献求助10
3分钟前
ceeray23发布了新的文献求助20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
猫猫完成签到 ,获得积分10
4分钟前
上官若男应助Leee采纳,获得10
4分钟前
4分钟前
王王碎冰冰应助徐对话采纳,获得30
4分钟前
在雨SAMA发布了新的文献求助30
4分钟前
风吹而过完成签到 ,获得积分10
4分钟前
SciGPT应助在雨SAMA采纳,获得10
5分钟前
忐忑的阑香完成签到,获得积分10
5分钟前
在雨SAMA完成签到,获得积分10
5分钟前
5分钟前
5分钟前
王王碎冰冰应助徐对话采纳,获得30
5分钟前
6分钟前
烟花应助危机的尔琴采纳,获得10
6分钟前
6分钟前
危机的尔琴完成签到,获得积分10
6分钟前
Leee完成签到,获得积分20
6分钟前
6分钟前
6分钟前
Leee发布了新的文献求助10
6分钟前
6分钟前
6分钟前
icoo发布了新的文献求助10
6分钟前
小g完成签到,获得积分10
6分钟前
小白完成签到 ,获得积分10
6分钟前
浮游应助Wei采纳,获得10
7分钟前
高大的清涟完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628308
求助须知:如何正确求助?哪些是违规求助? 4716465
关于积分的说明 14964002
捐赠科研通 4786025
什么是DOI,文献DOI怎么找? 2555522
邀请新用户注册赠送积分活动 1516799
关于科研通互助平台的介绍 1477332